comparison toolboxes/FullBNT-1.0.7/bnt/examples/static/qmr1.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 % Make a QMR-like network
2 % This is a bipartite graph, where the top layer contains hidden disease nodes,
3 % and the bottom later contains observed finding nodes.
4 % The diseases have Bernoulli CPDs, the findings noisy-or CPDs.
5 % See quickscore_inf_engine for references.
6
7 pMax = 0.01;
8 Nfindings = 10;
9 Ndiseases = 5;
10 %Nfindings = 20;
11 %Ndiseases = 10;
12
13 N=Nfindings+Ndiseases;
14 findings = Ndiseases+1:N;
15 diseases = 1:Ndiseases;
16
17 G = zeros(Ndiseases, Nfindings);
18 for i=1:Nfindings
19 v= rand(1,Ndiseases);
20 rents = find(v<0.8);
21 if (length(rents)==0)
22 rents=ceil(rand(1)*Ndiseases);
23 end
24 G(rents,i)=1;
25 end
26
27 prior = pMax*rand(1,Ndiseases);
28 leak = 0.5*rand(1,Nfindings); % in real QMR, leak approx exp(-0.02) = 0.98
29 %leak = ones(1,Nfindings); % turns off leaks, which makes inference much harder
30 inhibit = rand(Ndiseases, Nfindings);
31 inhibit(not(G)) = 1;
32
33
34 % first half of findings are +ve, second half -ve
35 % The very first and last findings are hidden
36 pos = 2:floor(Nfindings/2);
37 neg = (pos(end)+1):(Nfindings-1);
38
39 % Make the bnet in the straightforward way
40 tabular_leaves = 0;
41 obs_nodes = myunion(pos, neg) + Ndiseases;
42 big_bnet = mk_qmr_bnet(G, inhibit, leak, prior, tabular_leaves, obs_nodes);
43 big_evidence = cell(1, N);
44 big_evidence(findings(pos)) = num2cell(repmat(2, 1, length(pos)));
45 big_evidence(findings(neg)) = num2cell(repmat(1, 1, length(neg)));
46
47 %clf;draw_layout(big_bnet.dag);
48 %filename = '../public_html/Bayes/Figures/qmr.rnd.jpg';
49 %% 3x3 inches
50 %set(gcf,'units','inches');
51 %set(gcf,'PaperPosition',[0 0 3 3])
52 %print(gcf,'-djpeg','-r100',filename);
53
54
55 % Marginalize out hidden leaves apriori
56 positive_leaves_only = 1;
57 [bnet, vals] = mk_minimal_qmr_bnet(G, inhibit, leak, prior, pos, neg, positive_leaves_only);
58 obs_nodes = bnet.observed;
59 evidence = cell(1, Ndiseases + length(obs_nodes));
60 evidence(obs_nodes) = num2cell(vals);
61
62
63 clear engine;
64 engine{1} = quickscore_inf_engine(inhibit, leak, prior);
65 engine{2} = jtree_inf_engine(big_bnet);
66 engine{3} = jtree_inf_engine(bnet);
67
68 %fname = '/home/cs/murphyk/matlab/Misc/loopybel.txt';
69 global BNT_HOME
70 fname = sprintf('%s/loopybel.txt', BNT_HOME);
71
72
73 max_iter = 6;
74 engine{4} = pearl_inf_engine(bnet, 'protocol', 'parallel', 'max_iter', max_iter);
75 %engine{5} = belprop_inf_engine(bnet, 'max_iter', max_iter, 'filename', fname);
76 engine{5} = belprop_inf_engine(bnet, 'max_iter', max_iter);
77
78 E = length(engine);
79 exact = 1:3;
80 loopy = [4 5];
81
82 ll = zeros(1,E);
83 tic; engine{1} = enter_evidence(engine{1}, pos, neg); toc
84 tic; [engine{2}, ll(2)] = enter_evidence(engine{2}, big_evidence); toc
85 tic; [engine{3}, ll(3)] = enter_evidence(engine{3}, evidence); toc
86 tic; [engine{4}, ll(4), niter(4)] = enter_evidence(engine{4}, evidence); toc
87 tic; [engine{5}, niter(5)] = enter_evidence(engine{5}, evidence); toc
88
89 ll
90
91 post = zeros(E, Ndiseases);
92 for e=1:E
93 for i=diseases(:)'
94 m = marginal_nodes(engine{e}, i);
95 post(e, i) = m.T(2);
96 end
97 end
98
99 for e=exact(:)'
100 for i=diseases(:)'
101 assert(approxeq(post(1, i), post(e, i)));
102 end
103 end
104
105 a = zeros(Ndiseases, 2);
106 for ei=1:length(loopy)
107 for i=diseases(:)'
108 a(i,ei) = approxeq(post(1, i), post(loopy(ei), i));
109 end
110 end
111 disp('is the loopy posterior correct?');
112 disp(a)