comparison toolboxes/FullBNT-1.0.7/bnt/examples/static/dtree/test_restaurants.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 % Here the training data is adapted from Russell95 book. See restaurant.names for description.
2 % (1) Use infomation-gain as the split testing score, we get the the same decision tree as the book Russell 95 (page 537),
3 % and the Gain(Patrons) is 0.5409, equal to the result in Page 541 of Russell 95. (see below output trace)
4 % (Note: the dtree in that book has small compilation error, the Type node is from YES of Hungry node, not NO.)
5 % (2) Use gain-ratio (Quilan 93), the splitting defavorite attribute with more values. (e.g. the Type attribute here)
6
7 dtreeCPD=tree_CPD;
8
9 % load data
10 fname = fullfile(BNT_HOME, 'examples', 'static', 'uci_data', 'restaurant', 'restaurant.data');
11 data=load(fname);
12 data=data';
13
14 %make the data be BNT compliant (values for discrete nodes are from 1-n, here n is the node size)
15 % e.g. if the values are [0 1 6], they must be mapping to [1 2 3]
16 %data=transform_data(data,'tmp.dat',[]); %here no cts nodes
17
18 % learn decision tree from data
19 ns=2*ones(1,11);
20 ns(5:6)=3;
21 ns(9:10)=4;
22 dtreeCPD1=learn_params(dtreeCPD,1:11,data,ns,[]);
23
24 % evaluate on data
25 [score,outputs]=evaluate_tree_performance(dtreeCPD1,1:11,data,ns,[]);
26 fprintf('Accuracy in training data %6.3f\n',score);
27
28 % show decision tree using graphpad
29
30
31
32 % --------------------------Output trace: using Information-Gain------------------------------
33 % The splits are Patron, Hungry, Type, Fri/Sat
34 % *********************************
35 % Create node 1 split at 5 gain 0.5409 Th 0. Class 1 Cases 12 Error 6
36 % Create leaf node(onecla) 2. Class 1 Cases 2 Error 0
37 % Add subtree node 2 to 1. #nodes 2
38 % Create leaf node(onecla) 3. Class 2 Cases 4 Error 0
39 % Add subtree node 3 to 1. #nodes 3
40 % Create node 4 split at 4 gain 0.2516 Th 0. Class 1 Cases 6 Error 2
41 % Create leaf node(onecla) 5. Class 1 Cases 2 Error 0
42 % Add subtree node 5 to 4. #nodes 5
43 % Create node 6 split at 9 gain 0.5000 Th 0. Class 1 Cases 4 Error 2
44 % Create leaf node(nullset) 7. Father 6 Class 1
45 % Create node 8 split at 3 gain 1.0000 Th 0. Class 1 Cases 2 Error 1
46 % Create leaf node(onecla) 9. Class 1 Cases 1 Error 0
47 % Add subtree node 9 to 8. #nodes 9
48 % Create leaf node(onecla) 10. Class 2 Cases 1 Error 0
49 % Add subtree node 10 to 8. #nodes 10
50 % Add subtree node 8 to 6. #nodes 10
51 % Create leaf node(onecla) 11. Class 2 Cases 1 Error 0
52 % Add subtree node 11 to 6. #nodes 11
53 % Create leaf node(onecla) 12. Class 1 Cases 1 Error 0
54 % Add subtree node 12 to 6. #nodes 12
55 % Add subtree node 6 to 4. #nodes 12
56 % Add subtree node 4 to 1. #nodes 12
57 % ********************************
58 %
59 % Note:
60 % ***Create node 4 split at 4 gain 0.2516 Th 0. Class 1 Cases 6 Error 2
61 % This mean we create a new node number 4, it is splitting at the attribute 4, and info-gain is 0.2516,
62 % "Th 0" means threshhold for splitting continous attribute, "Class 1" means the majority class at node 4 is 1,
63 % and "Cases 6" means it has 6 cases attached to it, "Error 2" means it has two errors if changing the class lable of
64 % all the cases in it to the majority class.
65 % *** Add subtree node 12 to 6. #nodes 12
66 % It means we add the child node 12 to node 6.
67 % *** Create leaf node(onecla) 10. Class 2 Cases 1 Error 0
68 % here 'onecla' means all cases in this node belong to one class, so no need to split further.
69 % 'nullset' means no training cases belong to this node, we use its parent node majority class as its class
70 %
71 %
72 %
73 % ---------------Output trace: using GainRatio-----------------------
74 % The splits are Patron, Hungry, Fri/Sat, Price
75 %
76 %
77 % Create node 1 split at 5 gain 0.3707 Th 0. Class 1 Cases 12 Error 6
78 % Create leaf node(onecla) 2. Class 1 Cases 2 Error 0
79 % Add subtree node 2 to 1. #nodes 2
80 % Create leaf node(onecla) 3. Class 2 Cases 4 Error 0
81 % Add subtree node 3 to 1. #nodes 3
82 % Create node 4 split at 4 gain 0.2740 Th 0. Class 1 Cases 6 Error 2
83 % Create leaf node(onecla) 5. Class 1 Cases 2 Error 0
84 % Add subtree node 5 to 4. #nodes 5
85 % Create node 6 split at 3 gain 0.3837 Th 0. Class 1 Cases 4 Error 2
86 % Create leaf node(onecla) 7. Class 1 Cases 1 Error 0
87 % Add subtree node 7 to 6. #nodes 7
88 % Create node 8 split at 6 gain 1.0000 Th 0. Class 2 Cases 3 Error 1
89 % Create leaf node(onecla) 9. Class 2 Cases 2 Error 0
90 % Add subtree node 9 to 8. #nodes 9
91 % Create leaf node(nullset) 10. Father 8 Class 2
92 % Create leaf node(onecla) 11. Class 1 Cases 1 Error 0
93 % Add subtree node 11 to 8. #nodes 11
94 % Add subtree node 8 to 6. #nodes 11
95 % Add subtree node 6 to 4. #nodes 11
96 % Add subtree node 4 to 1. #nodes 11
97 %
98 %