Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/examples/static/cmp_inference_static.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [time, engine] = cmp_inference_static(bnet, engine, varargin) | |
2 % CMP_INFERENCE Compare several inference engines on a BN | |
3 % function [time, engine] = cmp_inference_static(bnet, engine, ...) | |
4 % | |
5 % engine{i} is the i'th inference engine. | |
6 % time(e) = elapsed time for doing inference with engine e | |
7 % | |
8 % The list below gives optional arguments [default value in brackets]. | |
9 % | |
10 % exact - specifies which engines do exact inference [ 1:length(engine) ] | |
11 % singletons_only - if 1, we only call marginal_nodes, else this and marginal_family [0] | |
12 % maximize - 1 means we do max-propagation, 0 means sum-propagation [0] | |
13 % check_ll - 1 means we check that the log-likelihoods are correct [1] | |
14 % observed - list of the observed ndoes [ bnet.observed ] | |
15 % check_converged - list of loopy engines that should be checked for convergence [ [] ] | |
16 % If an engine has converged, it is added to the exact list. | |
17 | |
18 | |
19 % set default params | |
20 exact = 1:length(engine); | |
21 singletons_only = 0; | |
22 maximize = 0; | |
23 check_ll = 1; | |
24 observed = bnet.observed; | |
25 check_converged = []; | |
26 | |
27 args = varargin; | |
28 nargs = length(args); | |
29 for i=1:2:nargs | |
30 switch args{i}, | |
31 case 'exact', exact = args{i+1}; | |
32 case 'singletons_only', singletons_only = args{i+1}; | |
33 case 'maximize', maximize = args{i+1}; | |
34 case 'check_ll', check_ll = args{i+1}; | |
35 case 'observed', observed = args{i+1}; | |
36 case 'check_converged', check_converged = args{i+1}; | |
37 otherwise, | |
38 error(['unrecognized argument ' args{i}]) | |
39 end | |
40 end | |
41 | |
42 E = length(engine); | |
43 ref = exact(1); % reference | |
44 | |
45 N = length(bnet.dag); | |
46 ev = sample_bnet(bnet); | |
47 evidence = cell(1,N); | |
48 evidence(observed) = ev(observed); | |
49 %celldisp(evidence(observed)) | |
50 | |
51 for i=1:E | |
52 tic; | |
53 if check_ll | |
54 [engine{i}, ll(i)] = enter_evidence(engine{i}, evidence, 'maximize', maximize); | |
55 else | |
56 engine{i} = enter_evidence(engine{i}, evidence, 'maximize', maximize); | |
57 end | |
58 time(i)=toc; | |
59 end | |
60 | |
61 for i=check_converged(:)' | |
62 niter = loopy_converged(engine{i}); | |
63 if niter > 0 | |
64 fprintf('loopy engine %d converged in %d iterations\n', i, niter); | |
65 % exact = myunion(exact, i); | |
66 else | |
67 fprintf('loopy engine %d has not converged\n', i); | |
68 end | |
69 end | |
70 | |
71 cmp = exact(2:end); | |
72 if check_ll | |
73 for i=cmp(:)' | |
74 assert(approxeq(ll(ref), ll(i))); | |
75 end | |
76 end | |
77 | |
78 hnodes = mysetdiff(1:N, observed); | |
79 | |
80 if ~singletons_only | |
81 get_marginals(engine, hnodes, exact, 0); | |
82 end | |
83 get_marginals(engine, hnodes, exact, 1); | |
84 | |
85 %%%%%%%%%% | |
86 | |
87 function get_marginals(engine, hnodes, exact, singletons) | |
88 | |
89 bnet = bnet_from_engine(engine{1}); | |
90 N = length(bnet.dag); | |
91 cnodes_bitv = zeros(1,N); | |
92 cnodes_bitv(bnet.cnodes) = 1; | |
93 ref = exact(1); % reference | |
94 cmp = exact(2:end); | |
95 E = length(engine); | |
96 | |
97 for n=hnodes(:)' | |
98 for e=1:E | |
99 if singletons | |
100 m{e} = marginal_nodes(engine{e}, n); | |
101 else | |
102 m{e} = marginal_family(engine{e}, n); | |
103 end | |
104 end | |
105 for e=cmp(:)' | |
106 if cnodes_bitv(n) | |
107 assert(approxeq(m{ref}.mu, m{e}.mu)) | |
108 assert(approxeq(m{ref}.Sigma, m{e}.Sigma)) | |
109 else | |
110 assert(approxeq(m{ref}.T, m{e}.T)) | |
111 end | |
112 assert(isequal(m{e}.domain, m{ref}.domain)); | |
113 end | |
114 end |