Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/examples/static/StructLearn/model_select2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 % Online Bayesian model selection demo. | |
2 | |
3 % We generate data from the model A->B | |
4 % and compute the posterior prob of all 3 dags on 2 nodes: | |
5 % (1) A B, (2) A <- B , (3) A -> B | |
6 % Models 2 and 3 are Markov equivalent, and therefore indistinguishable from | |
7 % observational data alone. | |
8 | |
9 % We control the dependence of B on A by setting | |
10 % P(B|A) = 0.5 - epislon and vary epsilon | |
11 % as in Koller & Friedman book p512 | |
12 | |
13 % ground truth | |
14 N = 2; | |
15 dag = zeros(N); | |
16 A = 1; B = 2; | |
17 dag(A,B) = 1; | |
18 | |
19 ntrials = 100; | |
20 ns = 2*ones(1,N); | |
21 true_bnet = mk_bnet(dag, ns); | |
22 true_bnet.CPD{1} = tabular_CPD(true_bnet, 1, [0.5 0.5]); | |
23 | |
24 % hypothesis space | |
25 G = mk_all_dags(N); | |
26 nhyp = length(G); | |
27 hyp_bnet = cell(1, nhyp); | |
28 for h=1:nhyp | |
29 hyp_bnet{h} = mk_bnet(G{h}, ns); | |
30 for i=1:N | |
31 % We must set the CPTs to the mean of the prior for sequential log_marg_lik to be correct | |
32 % The BDeu prior is score equivalent, so models 2,3 will be indistinguishable. | |
33 % The uniform Dirichlet prior is not score equivalent... | |
34 fam = family(G{h}, i); | |
35 hyp_bnet{h}.CPD{i}= tabular_CPD(hyp_bnet{h}, i, 'prior_type', 'dirichlet', ... | |
36 'CPT', 'unif'); | |
37 end | |
38 end | |
39 | |
40 clf | |
41 seeds = 1:3; | |
42 expt = 1; | |
43 for seedi=1:length(seeds) | |
44 seed = seeds(seedi); | |
45 rand('state', seed); | |
46 randn('state', seed); | |
47 | |
48 es = [0.05 0.1 0.15 0.2]; | |
49 for ei=1:length(es) | |
50 e = es(ei); | |
51 true_bnet.CPD{2} = tabular_CPD(true_bnet, 2, [0.5+e 0.5-e; 0.5-e 0.5+e]); | |
52 | |
53 prior = normalise(ones(1, nhyp)); | |
54 hyp_w = zeros(ntrials+1, nhyp); | |
55 hyp_w(1,:) = prior(:)'; | |
56 LL = zeros(1, nhyp); | |
57 ll = zeros(1, nhyp); | |
58 for t=1:ntrials | |
59 ev = cell2num(sample_bnet(true_bnet)); | |
60 for i=1:nhyp | |
61 ll(i) = log_marg_lik_complete(hyp_bnet{i}, ev); | |
62 hyp_bnet{i} = bayes_update_params(hyp_bnet{i}, ev); | |
63 end | |
64 prior = normalise(prior .* exp(ll)); | |
65 LL = LL + ll; | |
66 hyp_w(t+1,:) = prior; | |
67 end | |
68 | |
69 % Plot posterior model probabilities | |
70 % Red = model 1 (no arcs), blue/green = models 2/3 (1 arc) | |
71 % Blue = model 2 (2->1) | |
72 % Green = model 3 (1->2, "ground truth") | |
73 | |
74 subplot2(length(seeds), length(es), seedi, ei); | |
75 m = size(hyp_w,1); | |
76 h=plot(1:m, hyp_w(:,1), 'r-', 1:m, hyp_w(:,2), 'b-.', 1:m, hyp_w(:,3), 'g:'); | |
77 axis([0 m 0 1]) | |
78 %title('model posterior vs. time') | |
79 title(sprintf('e=%3.2f, seed=%d', e, seed)); | |
80 drawnow | |
81 expt = expt + 1; | |
82 end | |
83 end |