comparison toolboxes/FullBNT-1.0.7/bnt/examples/static/StructLearn/model_select1.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 % Bayesian model selection demo.
2
3 % We generate data from the model A->B
4 % and compute the posterior prob of all 3 dags on 2 nodes:
5 % (1) A B, (2) A <- B , (3) A -> B
6 % Models 2 and 3 are Markov equivalent, and therefore indistinguishable from
7 % observational data alone.
8 % Using the "difficult" params, the true model only gets a higher posterior after 2000 trials!
9 % However, using the noisy NOT gate, the true model wins after 12 trials.
10
11 % ground truth
12 N = 2;
13 dag = zeros(N);
14 A = 1; B = 2;
15 dag(A,B) = 1;
16
17 difficult = 0;
18 if difficult
19 ntrials = 2000;
20 ns = 3*ones(1,N);
21 true_bnet = mk_bnet(dag, ns);
22 rand('state', 0);
23 temp = 5;
24 for i=1:N
25 %true_bnet.CPD{i} = tabular_CPD(true_bnet, i, temp);
26 true_bnet.CPD{i} = tabular_CPD(true_bnet, i);
27 end
28 else
29 ntrials = 25;
30 ns = 2*ones(1,N);
31 true_bnet = mk_bnet(dag, ns);
32 true_bnet.CPD{1} = tabular_CPD(true_bnet, 1, [0.5 0.5]);
33 pfail = 0.1;
34 psucc = 1-pfail;
35 true_bnet.CPD{2} = tabular_CPD(true_bnet, 2, [pfail psucc; psucc pfail]); % NOT gate
36 end
37
38 G = mk_all_dags(N);
39 nhyp = length(G);
40 hyp_bnet = cell(1, nhyp);
41 for h=1:nhyp
42 hyp_bnet{h} = mk_bnet(G{h}, ns);
43 for i=1:N
44 % We must set the CPTs to the mean of the prior for sequential log_marg_lik to be correct
45 % The BDeu prior is score equivalent, so models 2,3 will be indistinguishable.
46 % The uniform Dirichlet prior is not score equivalent...
47 fam = family(G{h}, i);
48 hyp_bnet{h}.CPD{i}= tabular_CPD(hyp_bnet{h}, i, 'prior_type', 'dirichlet', ...
49 'CPT', 'unif');
50 end
51 end
52 prior = normalise(ones(1, nhyp));
53
54 % save results before doing sequential updating
55 init_hyp_bnet = hyp_bnet;
56 init_prior = prior;
57
58
59 rand('state', 0);
60 hyp_w = zeros(ntrials+1, nhyp);
61 hyp_w(1,:) = prior(:)';
62
63 data = zeros(N, ntrials);
64
65 % First we compute the posteriors sequentially
66
67 LL = zeros(1, nhyp);
68 ll = zeros(1, nhyp);
69 for t=1:ntrials
70 ev = cell2num(sample_bnet(true_bnet));
71 data(:,t) = ev;
72 for i=1:nhyp
73 ll(i) = log_marg_lik_complete(hyp_bnet{i}, ev);
74 hyp_bnet{i} = bayes_update_params(hyp_bnet{i}, ev);
75 end
76 prior = normalise(prior .* exp(ll));
77 LL = LL + ll;
78 hyp_w(t+1,:) = prior;
79 end
80
81 % Plot posterior model probabilities
82 % Red = model 1 (no arcs), blue/green = models 2/3 (1 arc)
83 % Blue = model 2 (2->1)
84 % Green = model 3 (1->2, "ground truth")
85
86 if 1
87 figure;
88 m = size(hyp_w, 1);
89 h=plot(1:m, hyp_w(:,1), 'r-', 1:m, hyp_w(:,2), 'b-.', 1:m, hyp_w(:,3), 'g:');
90 axis([0 m 0 1])
91 title('model posterior vs. time')
92 %previewfig(gcf, 'format', 'png', 'height', 2, 'color', 'rgb')
93 %exportfig(gcf, '/home/cs/murphyk/public_html/Bayes/Figures/model_select.png',...
94 %'format', 'png', 'height', 2, 'color', 'rgb')
95 drawnow
96 end
97
98
99 % Now check that batch updating gives same result
100 hyp_bnet2 = init_hyp_bnet;
101 prior2 = init_prior;
102
103 cases = num2cell(data);
104 LL2 = zeros(1, nhyp);
105 for i=1:nhyp
106 LL2(i) = log_marg_lik_complete(hyp_bnet2{i}, cases);
107 hyp_bnet2{i} = bayes_update_params(hyp_bnet2{i}, cases);
108 end
109
110
111 assert(approxeq(LL, LL2))
112 LL
113
114 for i=1:nhyp
115 for j=1:N
116 s1 = struct(hyp_bnet{i}.CPD{j});
117 s2 = struct(hyp_bnet2{i}.CPD{j});
118 assert(approxeq(s1.CPT, s2.CPT))
119 end
120 end
121