Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/scg_dbn.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 % Test whether stable conditional Gaussian inference works | |
2 % Make a linear dynamical system | |
3 % X1 -> X2 | |
4 % | | | |
5 % v v | |
6 % Y1 Y2 | |
7 | |
8 intra = zeros(2); | |
9 intra(1,2) = 1; | |
10 inter = zeros(2); | |
11 inter(1,1) = 1; | |
12 n = 2; | |
13 | |
14 X = 2; % size of hidden state | |
15 Y = 2; % size of observable state | |
16 | |
17 ns = [X Y]; | |
18 bnet = mk_dbn(intra, inter, ns, 'discrete', [], 'observed', 2); | |
19 | |
20 x0 = rand(X,1); | |
21 V0 = eye(X); | |
22 C0 = rand(Y,X); | |
23 R0 = eye(Y); | |
24 A0 = rand(X,X); | |
25 Q0 = eye(X); | |
26 | |
27 bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', x0, 'cov', V0); | |
28 bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0); | |
29 bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0); | |
30 | |
31 | |
32 T = 5; % fixed length sequences | |
33 | |
34 engine = {}; | |
35 engine{end+1} = kalman_inf_engine(bnet); | |
36 engine{end+1} = scg_unrolled_dbn_inf_engine(bnet, T); | |
37 engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T); | |
38 | |
39 inf_time = cmp_inference_dbn(bnet, engine, T, 'check_ll', 0); |