Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/mk_chmm.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function bnet = mk_chmm(N, Q, Y, discrete_obs, coupled, CPD) | |
2 % MK_CHMM Make a coupled Hidden Markov Model | |
3 % | |
4 % There are N hidden nodes, each connected to itself and its two nearest neighbors in the next | |
5 % slice (apart from the edges, where there is 1 nearest neighbor). | |
6 % | |
7 % Example: If N = 3, the hidden backbone is as follows, where all arrows point to the righ+t | |
8 % | |
9 % X1--X2 | |
10 % \/ | |
11 % /\ | |
12 % X2--X2 | |
13 % \/ | |
14 % /\ | |
15 % X3--X3 | |
16 % | |
17 % Each hidden node has a "private" observed child (not shown). | |
18 % | |
19 % BNET = MK_CHMM(N, Q, Y) | |
20 % Each hidden node is discrete and has Q values. | |
21 % Each observed node is a Gaussian vector of length Y. | |
22 % | |
23 % BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS) | |
24 % If discrete_obs = 1, the observations are discrete (values in {1, .., Y}). | |
25 % | |
26 % BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS, COUPLED) | |
27 % If coupled = 0, the chains are not coupled, i.e., we make N parallel HMMs. | |
28 % | |
29 % BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS, COUPLED, CPDs) | |
30 % means use the specified CPD structures instead of creating random params. | |
31 % CPD{i}.CPT, i=1:N specifies the prior | |
32 % CPD{i}.CPT, i=2N+1:3N specifies the transition model | |
33 % CPD{i}.mean, CPD{i}.cov, i=N+1:2N specifies the observation model if Gaussian | |
34 % CPD{i}.CPT, i=N+1:2N if discrete | |
35 | |
36 | |
37 if nargin < 2, Q = 2; end | |
38 if nargin < 3, Y = 1; end | |
39 if nargin < 4, discrete_obs = 0; end | |
40 if nargin < 5, coupled = 1; end | |
41 if nargin < 6, rnd = 1; else rnd = 0; end | |
42 | |
43 ss = N*2; | |
44 hnodes = 1:N; | |
45 onodes = (1:N)+N; | |
46 | |
47 intra = zeros(ss); | |
48 for i=1:N | |
49 intra(hnodes(i), onodes(i))=1; | |
50 end | |
51 | |
52 inter = zeros(ss); | |
53 if coupled | |
54 for i=1:N | |
55 inter(i, max(i-1,1):min(i+1,N))=1; | |
56 end | |
57 else | |
58 inter(1:N, 1:N) = eye(N); | |
59 end | |
60 | |
61 ns = [Q*ones(1,N) Y*ones(1,N)]; | |
62 | |
63 eclass1 = [hnodes onodes]; | |
64 eclass2 = [hnodes+ss onodes]; | |
65 if discrete_obs | |
66 dnodes = 1:ss; | |
67 else | |
68 dnodes = hnodes; | |
69 end | |
70 bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ... | |
71 'observed', onodes); | |
72 | |
73 if rnd | |
74 for i=hnodes(:)' | |
75 bnet.CPD{i} = tabular_CPD(bnet, i); | |
76 end | |
77 for i=onodes(:)' | |
78 if discrete_obs | |
79 bnet.CPD{i} = tabular_CPD(bnet, i); | |
80 else | |
81 bnet.CPD{i} = gaussian_CPD(bnet, i); | |
82 end | |
83 end | |
84 for i=hnodes(:)'+ss | |
85 bnet.CPD{i} = tabular_CPD(bnet, i); | |
86 end | |
87 else | |
88 for i=hnodes(:)' | |
89 bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT); | |
90 end | |
91 for i=onodes(:)' | |
92 if discrete_obs | |
93 bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT); | |
94 else | |
95 bnet.CPD{i} = gaussian_CPD(bnet, i, CPD{i}.mean, CPD{i}.cov); | |
96 end | |
97 end | |
98 for i=hnodes(:)'+ss | |
99 bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT); | |
100 end | |
101 end | |
102 | |
103 |