comparison toolboxes/FullBNT-1.0.7/bnt/CPDs/@softmax_CPD/maximize_params.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function CPD = maximize_params(CPD, temp)
2 % MAXIMIZE_PARAMS Set the params of a CPD to their ML values (dsoftmax) using IRLS
3 % CPD = maximize_params(CPD, temperature)
4 % temperature parameter is ignored
5
6 % Written by Pierpaolo Brutti
7
8 if ~adjustable_CPD(CPD), return; end
9 options = foptions;
10
11 if CPD.verbose
12 options(1) = 1;
13 else
14 options(1) = -1;
15 end
16 %options(1) = CPD.verbose;
17
18 options(2) = CPD.wthresh;
19 options(3) = CPD.llthresh;
20 options(5) = CPD.approx_hess;
21 options(14) = CPD.max_iter;
22
23 dpsize = size(CPD.self_vals,3);
24 for i=1:dpsize,
25 mask=find(CPD.eso_weights(:,:,i)>0); % for adapting the parameters we use only positive weighted example
26 if ~isempty(mask),
27 if ~isempty(CPD.dps_as_cps.ndx),
28 puredp_map = find_equiv_posns(CPD.dpndx, union(CPD.dpndx, CPD.dps_as_cps.ndx)); % find the glm structure
29 subs = ind2subv(CPD.sizes(union(CPD.dpndx, CPD.dps_as_cps.ndx)),i); % that corrisponds to the
30 active_glm = max([1,subv2ind(CPD.sizes(CPD.dpndx), subs(puredp_map))]); % i-th 'fictitious' example
31
32 CPD.glim{active_glm} = netopt_weighted(CPD.glim{active_glm}, options, CPD.parent_vals(mask',:,i),...
33 CPD.self_vals(mask',:,i), CPD.eso_weights(mask',:,i), 'scg');
34 else
35 alfa = 0.4; if CPD.solo, alfa = 1; end % learning step = 1 <=> self is all alone in the net
36 CPD.glim{i} = glmtrain_weighted(CPD.glim{i}, options, CPD.parent_vals(mask',:),...
37 CPD.self_vals(mask',:,i), CPD.eso_weights(mask',:,i), alfa);
38 end
39 end
40 mask=[];
41 end