comparison toolboxes/FullBNT-1.0.7/bnt/CPDs/@softmax_CPD/convert_to_pot.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function pot = convert_to_pot(CPD, pot_type, domain, evidence)
2 % CONVERT_TO_POT Convert a softmax CPD to a potential
3 % pots = convert_to_pot(CPD, pot_type, domain, evidence)
4 %
5 % pots = CPD evaluated using evidence(domain)
6
7 ncases = size(domain,2);
8 assert(ncases==1); % not yet vectorized
9
10 sz = dom_sizes(CPD);
11 ns = zeros(1, max(domain));
12 ns(domain) = sz;
13
14 odom = domain(~isemptycell(evidence(domain)));
15 T = convert_to_table(CPD, domain, evidence);
16
17 switch pot_type
18 case 'u',
19 pot = upot(domain, sz, T, 0*myones(sz));
20 case 'd',
21 ns(odom) = 1;
22 pot = dpot(domain, ns(domain), T);
23
24 case {'c','g'},
25 % Since we want the output to be a Gaussian, the whole family must be observed.
26 % In other words, the potential is really just a constant.
27 p = T;
28 %p = prob_node(CPD, evidence(domain(end)), evidence(domain(1:end-1)));
29 ns(domain) = 0;
30 pot = cpot(domain, ns(domain), log(p));
31
32 case 'cg',
33 T = T(:);
34 ns(odom) = 1;
35 can = cell(1, length(T));
36 for i=1:length(T)
37 can{i} = cpot([], [], log(T(i)));
38 end
39 ps = domain(1:end-1);
40 dps = ps(CPD.dpndx);
41 cps = ps(CPD.cpndx);
42 ddom = [dps CPD.self];
43 cdom = cps;
44 pot = cgpot(ddom, cdom, ns, can);
45
46 case 'scg'
47 T = T(:);
48 ns(odom) = 1;
49 pot_array = cell(1, length(T));
50 for i=1:length(T)
51 pot_array{i} = scgcpot([], [], T(i));
52 end
53 pot = scgpot(domain, [], [], ns, pot_array);
54
55 otherwise,
56 error(['unrecognized pot type ' pot_type])
57 end
58