comparison toolboxes/FullBNT-1.0.7/bnt/CPDs/@hhmmQ_CPD/hhmmQ_CPD.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function CPD = hhmmQ_CPD(bnet, self, varargin)
2 % HHMMQ_CPD Make the CPD for a Q node in a hierarchical HMM
3 % CPD = hhmmQ_CPD(bnet, self, ...)
4 %
5 % Fself(t-1) Qps(t)
6 % \ |
7 % \ v
8 % Qold(t-1) -> Q(t)
9 % /
10 % /
11 % Fbelow(t-1)
12 %
13 % Let ss = slice size = num. nodes per slice.
14 % This node is Q(t), and has mandatory parents Qold(t-1) (assumed to be numbered Q(t)-ss)
15 % and optional parents Fbelow, Fself, Qps.
16 % We require parents to be ordered (numbered) as follows:
17 % Qold, Fbelow, Fself, Qps, Q.
18 %
19 % If Fself=2, we use the transition matrix, else we use the prior matrix.
20 % If Fself node is omitted (eg. top level), we always use the transition matrix.
21 % If Fbelow=2, we may change state, otherwise we must stay in the same state.
22 % If Fbelow node is omitted (eg., bottom level), we may change state at every step.
23 % If Qps (Q parents) are specified, all parameters are conditioned on their joint value.
24 % We may choose any subset of nodes to condition on, as long as they as numbered lower than self.
25 %
26 % optional args [defaults]
27 %
28 % Fself - node number <= ss
29 % Fbelow - node number <= ss
30 % Qps - node numbers (all <= 2*ss) - uses 2TBN indexing
31 % transprob - transprob(i,k,j) = prob transition from i to j given Qps = k ['leftright']
32 % selfprob - prob of a transition from i to i given Qps=k [0.1]
33 % startprob - startprob(k,j) = prob start in j given Qps = k ['leftstart']
34 % startargs - other args to be passed to the sub tabular_CPD for learning startprob
35 % transargs - other args will be passed to the sub tabular_CPD for learning transprob
36 % fullstartprob - 1 means startprob depends on Q(t-1) [0]
37 % hhmmQ_CPD is a subclass of tabular_CPD so we inherit inference methods like CPD_to_pot, etc.
38 %
39 % We create isolated tabular_CPDs with no F parents to learn transprob/startprob
40 % so we can avail of e.g., entropic or Dirichlet priors.
41 % In the future, we will be able to represent the transprob using a tree_CPD.
42 %
43 % For details, see "Linear-time inference in hierarchical HMMs", Murphy and Paskin, NIPS'01.
44
45
46 ss = bnet.nnodes_per_slice;
47 ns = bnet.node_sizes(:);
48
49 % set default arguments
50 Fself = [];
51 Fbelow = [];
52 Qps = [];
53 startprob = 'leftstart';
54 transprob = 'leftright';
55 startargs = {};
56 transargs = {};
57 selfprob = 0.1;
58 fullstartprob = 0;
59
60 for i=1:2:length(varargin)
61 switch varargin{i},
62 case 'Fself', Fself = varargin{i+1};
63 case 'Fbelow', Fbelow = varargin{i+1};
64 case 'Qps', Qps = varargin{i+1};
65 case 'transprob', transprob = varargin{i+1};
66 case 'selfprob', selfprob = varargin{i+1};
67 case 'startprob', startprob = varargin{i+1};
68 case 'startargs', startargs = varargin{i+1};
69 case 'transargs', transargs = varargin{i+1};
70 case 'fullstartprob', fullstartprob = varargin{i+1};
71 end
72 end
73
74 CPD.fullstartprob = fullstartprob;
75
76 ps = parents(bnet.dag, self);
77 ndsz = ns(:)';
78 CPD.dom_sz = [ndsz(ps) ns(self)];
79 CPD.Fself_ndx = find_equiv_posns(Fself, ps);
80 CPD.Fbelow_ndx = find_equiv_posns(Fbelow, ps);
81 %CPD.Qps_ndx = find_equiv_posns(Qps+ss, ps);
82 CPD.Qps_ndx = find_equiv_posns(Qps, ps);
83 old_self = self-ss;
84 CPD.old_self_ndx = find_equiv_posns(old_self, ps);
85
86 Qps = ps(CPD.Qps_ndx);
87 CPD.Qsz = ns(self);
88 CPD.Qpsz = prod(ns(Qps));
89 CPD.Qpsizes = ns(Qps);
90 Qsz = CPD.Qsz;
91 Qpsz = CPD.Qpsz;
92
93 if strcmp(transprob, 'leftright')
94 LR = mk_leftright_transmat(Qsz, selfprob);
95 transprob = repmat(reshape(LR, [1 Qsz Qsz]), [Qpsz 1 1]); % transprob(k,i,j)
96 transprob = permute(transprob, [2 1 3]); % now transprob(i,k,j)
97 end
98 transargs{end+1} = 'CPT';
99 transargs{end+1} = transprob;
100 CPD.sub_CPD_trans = mk_isolated_tabular_CPD(ns([old_self Qps self]), transargs);
101 S = struct(CPD.sub_CPD_trans);
102 %CPD.transprob = myreshape(S.CPT, [Qsz Qpsz Qsz]);
103 CPD.transprob = S.CPT;
104
105
106 if strcmp(startprob, 'leftstart')
107 startprob = zeros(Qpsz, Qsz);
108 startprob(:,1) = 1;
109 end
110 if isempty(CPD.Fself_ndx)
111 CPD.sub_CPD_start = [];
112 CPD.startprob = [];
113 else
114 startargs{end+1} = 'CPT';
115 startargs{end+1} = startprob;
116 if CPD.fullstartprob
117 CPD.sub_CPD_start = mk_isolated_tabular_CPD(ns([self Qps self]), startargs);
118 S = struct(CPD.sub_CPD_start);
119 %CPD.startprob = myreshape(S.CPT, [Qsz Qpsz Qsz]);
120 CPD.startprob = S.CPT;
121 else
122 CPD.sub_CPD_start = mk_isolated_tabular_CPD(ns([Qps self]), startargs);
123 S = struct(CPD.sub_CPD_start);
124 %CPD.startprob = myreshape(S.CPT, [CPD.Qpsizes Qsz]);
125 CPD.startprob = S.CPT;
126 end
127 end
128
129 CPD = class(CPD, 'hhmmQ_CPD', tabular_CPD(bnet, self));
130
131 CPD = update_CPT(CPD);
132