comparison toolboxes/FullBNT-1.0.7/bnt/CPDs/@hhmmQ_CPD/Old/update_ess.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, hidden_bitv)
2 % UPDATE_ESS Update the Expected Sufficient Statistics of a hhmm Q node.
3 % function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, idden_bitv)
4
5 % Figure out the node numbers associated with each parent
6 % e.g., D=4, d=3, Qps = all Qs above, so dom = [Q3(t-1) F4(t-1) F3(t-1) Q1(t) Q2(t) Q3(t)].
7 % so self = Q3(t), old_self = Q3(t-1), CPD.Qps = [1 2], Qps = [Q1(t) Q2(t)]
8 dom = fmarginal.domain;
9 self = dom(end);
10 old_self = dom(1);
11 Qps = dom(length(dom)-length(CPD.Qps):end-1);
12
13 Qsz = CPD.Qsizes(CPD.d);
14 Qpsz = prod(CPD.Qsizes(CPD.Qps));
15
16 % If some of the Q nodes are observed (which happens during supervised training)
17 % the counts will only be non-zero in positions
18 % consistent with the evidence. We put the computed marginal responsibilities
19 % into the appropriate slots of the big counts array.
20 % (Recall that observed discrete nodes only have a single effective value.)
21 % (A more general, but much slower, way is to call add_evidence_to_dmarginal.)
22 % We assume the F nodes are never observed.
23
24 obs_self = ~hidden_bitv(self);
25 obs_Qps = (~isempty(Qps)) & (~any(hidden_bitv(Qps))); % we assume that all or none of the Q parents are observed
26
27 if obs_self
28 self_val = evidence{self};
29 oldself_val = evidence{old_self};
30 end
31
32 if obs_Qps
33 Qps_val = subv2ind(Qpsz, cat(1, evidence{Qps}));
34 if Qps_val == 0
35 keyboard
36 end
37 end
38
39 if CPD.d==1 % no Qps from above
40 if ~CPD.F1toQ1 % no F from self
41 % marg(Q1(t-1), F2(t-1), Q1(t))
42 % F2(t-1) P(Q1(t)=j | Q1(t-1)=i)
43 % 1 delta(i,j)
44 % 2 transprob(i,j)
45 if obs_self
46 hor_counts = zeros(Qsz, Qsz);
47 hor_counts(oldself_val, self_val) = fmarginal.T(2);
48 else
49 marg = reshape(fmarginal.T, [Qsz 2 Qsz]);
50 hor_counts = squeeze(marg(:,2,:));
51 end
52 else
53 % marg(Q1(t-1), F2(t-1), F1(t-1), Q1(t))
54 % F2(t-1) F1(t-1) P(Qd(t)=j| Qd(t-1)=i)
55 % ------------------------------------------------------
56 % 1 1 delta(i,j)
57 % 2 1 transprob(i,j)
58 % 1 2 impossible
59 % 2 2 startprob(j)
60 if obs_self
61 marg = myreshape(fmarginal.T, [1 2 2 1]);
62 hor_counts = zeros(Qsz, Qsz);
63 hor_counts(oldself_val, self_val) = marg(1,2,1,1);
64 ver_counts = zeros(Qsz, 1);
65 %ver_counts(self_val) = marg(1,2,2,1);
66 ver_counts(self_val) = marg(1,2,2,1) + marg(1,1,2,1);
67 else
68 marg = reshape(fmarginal.T, [Qsz 2 2 Qsz]);
69 hor_counts = squeeze(marg(:,2,1,:));
70 %ver_counts = squeeze(sum(marg(:,2,2,:),1)); % sum over i
71 ver_counts = squeeze(sum(marg(:,2,2,:),1)) + squeeze(sum(marg(:,1,2,:),1)); % sum i,b
72 end
73 end % F1toQ1
74 else % d ~= 1
75 if CPD.d < CPD.D % general case
76 % marg(Qd(t-1), Fd+1(t-1), Fd(t-1), Qps(t), Qd(t))
77 % Fd+1(t-1) Fd(t-1) P(Qd(t)=j| Qd(t-1)=i, Qps(t)=k)
78 % ------------------------------------------------------
79 % 1 1 delta(i,j)
80 % 2 1 transprob(i,k,j)
81 % 1 2 impossible
82 % 2 2 startprob(k,j)
83 if obs_Qps & obs_self
84 marg = myreshape(fmarginal.T, [1 2 2 1 1]);
85 k = 1;
86 hor_counts = zeros(Qsz, Qpsz, Qsz);
87 hor_counts(oldself_val, Qps_val, self_val) = marg(1, 2,1, k,1);
88 ver_counts = zeros(Qpsz, Qsz);
89 %ver_counts(Qps_val, self_val) = marg(1, 2,2, k,1);
90 ver_counts(Qps_val, self_val) = marg(1, 2,2, k,1) + marg(1, 1,2, k,1);
91 elseif obs_Qps & ~obs_self
92 marg = myreshape(fmarginal.T, [Qsz 2 2 1 Qsz]);
93 k = 1;
94 hor_counts = zeros(Qsz, Qpsz, Qsz);
95 hor_counts(:, Qps_val, :) = marg(:, 2,1, k,:);
96 ver_counts = zeros(Qpsz, Qsz);
97 %ver_counts(Qps_val, :) = sum(marg(:, 2,2, k,:), 1);
98 ver_counts(Qps_val, :) = sum(marg(:, 2,2, k,:), 1) + sum(marg(:, 1,2, k,:), 1);
99 elseif ~obs_Qps & obs_self
100 error('not yet implemented')
101 else % everything is hidden
102 marg = reshape(fmarginal.T, [Qsz 2 2 Qpsz Qsz]);
103 hor_counts = squeeze(marg(:,2,1,:,:)); % i,k,j
104 %ver_counts = squeeze(sum(marg(:,2,2,:,:),1)); % sum over i
105 ver_counts = squeeze(sum(marg(:,2,2,:,:),1)) + squeeze(sum(marg(:,1,2,:,:),1)); % sum over i,b
106 end
107 else % d == D, so no F from below
108 % marg(QD(t-1), FD(t-1), Qps(t), QD(t))
109 % FD(t-1) P(QD(t)=j | QD(t-1)=i, Qps(t)=k)
110 % 1 transprob(i,k,j)
111 % 2 startprob(k,j)
112 if obs_Qps & obs_self
113 marg = myreshape(fmarginal.T, [1 2 1 1]);
114 k = 1;
115 hor_counts = zeros(Qsz, Qpsz, Qsz);
116 hor_counts(oldself_val, Qps_val, self_val) = marg(1, 1, k,1);
117 ver_counts = zeros(Qpsz, Qsz);
118 ver_counts(Qps_val, self_val) = marg(1, 2, k,1);
119 elseif obs_Qps & ~obs_self
120 marg = myreshape(fmarginal.T, [Qsz 2 1 Qsz]);
121 k = 1;
122 hor_counts = zeros(Qsz, Qpsz, Qsz);
123 hor_counts(:, Qps_val, :) = marg(:, 1, k,:);
124 ver_counts = zeros(Qpsz, Qsz);
125 ver_counts(Qps_val, :) = sum(marg(:, 2, k, :), 1);
126 elseif ~obs_Qps & obs_self
127 error('not yet implemented')
128 else % everything is hidden
129 marg = reshape(fmarginal.T, [Qsz 2 Qpsz Qsz]);
130 hor_counts = squeeze(marg(:,1,:,:));
131 ver_counts = squeeze(sum(marg(:,2,:,:),1)); % sum over i
132 end
133 end
134 end
135
136 CPD.sub_CPD_trans = update_ess_simple(CPD.sub_CPD_trans, hor_counts);
137
138 if ~isempty(CPD.sub_CPD_start)
139 CPD.sub_CPD_start = update_ess_simple(CPD.sub_CPD_start, ver_counts);
140 end
141