comparison toolboxes/FullBNT-1.0.7/bnt/CPDs/@generic_CPD/learn_params.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function CPD = learn_params(CPD, fam, data, ns, cnodes)
2 % LEARN_PARAMS Compute the maximum likelihood estimate of the params of a generic CPD given complete data
3 % CPD = learn_params(CPD, fam, data, ns, cnodes)
4 %
5 % data(i,m) is the value of node i in case m (can be cell array).
6 % We assume this node has a maximize_params method.
7
8 %error('no longer supported') % KPM 1 Feb 03
9
10 if 1
11 ncases = size(data, 2);
12 CPD = reset_ess(CPD);
13 % make a fully observed joint distribution over the family
14 fmarginal.domain = fam;
15 fmarginal.T = 1;
16 fmarginal.mu = [];
17 fmarginal.Sigma = [];
18 if ~iscell(data)
19 cases = num2cell(data);
20 else
21 cases = data;
22 end
23 hidden_bitv = zeros(1, max(fam));
24 for m=1:ncases
25 % specify (as a bit vector) which elements in the family domain are hidden
26 hidden_bitv = zeros(1, max(fmarginal.domain));
27 ev = cases(:,m);
28 hidden_bitv(find(isempty(evidence)))=1;
29 CPD = update_ess(CPD, fmarginal, ev, ns, cnodes, hidden_bitv);
30 end
31 CPD = maximize_params(CPD);
32 end