comparison toolboxes/FullBNT-1.0.7/bnt/CPDs/@gaussian_CPD/log_prob_node.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function L = log_prob_node(CPD, self_ev, pev)
2 % LOG_PROB_NODE Compute prod_m log P(x(i,m)| x(pi_i,m), theta_i) for node i (gaussian)
3 % L = log_prob_node(CPD, self_ev, pev)
4 %
5 % self_ev(m) is the evidence on this node in case m.
6 % pev(i,m) is the evidence on the i'th parent in case m (if there are any parents).
7 % (These may also be cell arrays.)
8
9 if iscell(self_ev), usecell = 1; else usecell = 0; end
10
11 use_log = 1;
12 ncases = length(self_ev);
13 nparents = length(CPD.sizes)-1;
14 assert(ncases == size(pev, 2));
15
16 if ncases == 0
17 L = 0;
18 return;
19 end
20
21 L = 0;
22 for m=1:ncases
23 if isempty(CPD.dps)
24 i = 1;
25 else
26 if usecell
27 dpvals = cat(1, pev{CPD.dps, m});
28 else
29 dpvals = pev(CPD.dps, m);
30 end
31 i = subv2ind(CPD.sizes(CPD.dps), dpvals(:)');
32 end
33 if usecell
34 y = self_ev{m};
35 else
36 y = self_ev(m);
37 end
38 if length(CPD.cps) == 0
39 L = L + gaussian_prob(y, CPD.mean(:,i), CPD.cov(:,:,i), use_log);
40 else
41 if usecell
42 x = cat(1, pev{CPD.cps, m});
43 else
44 x = pev(CPD.cps, m);
45 end
46 L = L + gaussian_prob(y, CPD.mean(:,i) + CPD.weights(:,:,i)*x, CPD.cov(:,:,i), use_log);
47 end
48 end
49