comparison toolboxes/FullBNT-1.0.7/bnt/CPDs/@deterministic_CPD/deterministic_CPD.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function CPD = deterministic_CPD(bnet, self, fname, pfail)
2 % DETERMINISTIC_CPD Make a tabular CPD representing a (noisy) deterministic function
3 %
4 % CPD = deterministic_CPD(bnet, self, fname)
5 % This calls feval(fname, pvals) for each possible vector of parent values.
6 % e.g., suppose there are 2 ternary parents, then pvals =
7 % [1 1], [2 1], [3 1], [1 2], [2 2], [3 2], [1 3], [2 3], [3 3]
8 % If v = feval(fname, pvals(i)), then
9 % CPD(x | parents=pvals(i)) = 1 if x==v, and = 0 if x<>v
10 % e.g., suppose X4 = X2 AND (NOT X3). Then
11 % bnet.CPD{4} = deterministic_CPD(bnet, 4, inline('((x(1)-1) & ~(x(2)-1)) + 1'));
12 % Note that x(1) refers pvals(1) = X2, and x(2) refers to pvals(2)=X3
13 % See also boolean_CPD.
14 %
15 % CPD = deterministic_CPD(bnet, self, fname, pfail)
16 % will put probability mass 1-pfail on f(parents), and distribute pfail over the other values.
17 % This is useful for simulating noisy deterministic functions.
18 % If pfail is omitted, it is set to 0.
19 %
20
21
22 if nargin==0
23 % This occurs if we are trying to load an object from a file.
24 CPD = tabular_CPD(bnet, self);
25 return;
26 elseif isa(bnet, 'deterministic_CPD')
27 % This might occur if we are copying an object.
28 CPD = bnet;
29 return;
30 end
31
32 if nargin < 4, pfail = 0; end
33
34 ps = parents(bnet.dag, self);
35 ns = bnet.node_sizes;
36 psizes = ns(ps);
37 self_size = ns(self);
38
39 psucc = 1-pfail;
40
41 CPT = zeros(prod(psizes), self_size);
42 pvals = zeros(1, length(ps));
43 for i=1:prod(psizes)
44 pvals = ind2subv(psizes, i);
45 x = feval(fname, pvals);
46 %fprintf('%d ', [pvals x]); fprintf('\n');
47 if psucc == 1
48 CPT(i, x) = 1;
49 else
50 CPT(i, x) = psucc;
51 rest = mysetdiff(1:self_size, x);
52 CPT(i, rest) = pfail/length(rest);
53 end
54 end
55 CPT = reshape(CPT, [psizes self_size]);
56
57 CPD = tabular_CPD(bnet, self, 'CPT',CPT, 'clamped',1);
58
59