comparison toolboxes/FullBNT-1.0.7/Kalman/learn_AR.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [coef, C] = learn_AR(data, k)
2 % Find the ML parameters of a vector autoregressive process of order k.
3 % [coef, C] = learn_AR(k, data)
4 % data{l}(:,t) = the observations at time t in sequence l
5
6 warning('learn_AR seems to be broken');
7
8 nex = length(data);
9 obs = cell(1, nex);
10 for l=1:nex
11 obs{l} = convert_to_lagged_form(data{l}, k);
12 end
13
14 % The initial parameter values don't matter, since this is a perfectly observable problem.
15 % However, the size of F must be set correctly.
16 y = data{1};
17 [s T] = size(y);
18 coef = rand(s,s,k);
19 C = rand_psd(s);
20 [F,H,Q,R,initx,initV] = AR_to_SS(coef, C, y);
21
22 max_iter = 1;
23 fully_observed = 1;
24 diagQ = 0;
25 diagR = 0;
26 [F, H, Q, R, initx, initV, loglik] = ...
27 learn_kalman(obs, F, H, Q, R, initx, initV, max_iter, diagQ, diagR, fully_observed);
28
29 [coef, C] = SS_to_AR(F, Q, k);
30