Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/KPMstats/chisquared_table.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function X2 = chisquared_table(P,v) | |
2 %CHISQUARED_TABLE computes the "percentage points" of the | |
3 %chi-squared distribution, as in Abramowitz & Stegun Table 26.8 | |
4 % X2 = CHISQUARED_TABLE( P, v ) returns the value of chi-squared | |
5 % corresponding to v degrees of freedom and probability P. | |
6 % P is the probability that the sum of squares of v unit-variance | |
7 % normally-distributed random variables is <= X2. | |
8 % P and v may be matrices of the same size size, or either | |
9 % may be a scalar. | |
10 % | |
11 % e.g., to find the 95% confidence interval for 2 degrees | |
12 % of freedom, use CHISQUARED_TABLE( .95, 2 ), yielding 5.99, | |
13 % in agreement with Abramowitz & Stegun's Table 26.8 | |
14 % | |
15 % This result can be checked through the function | |
16 % CHISQUARED_PROB( 5.99, 2 ), yielding 0.9500 | |
17 % | |
18 % The familiar 1.96-sigma confidence bounds enclosing 95% of | |
19 % a 1-D gaussian is found through | |
20 % sqrt( CHISQUARED_TABLE( .95, 1 )), yielding 1.96 | |
21 % | |
22 % See also CHISQUARED_PROB | |
23 % | |
24 %Peter R. Shaw, WHOI | |
25 %Leslie Rosenfeld, MBARI | |
26 | |
27 % References: Press et al., Numerical Recipes, Cambridge, 1986; | |
28 % Abramowitz & Stegun, Handbook of Mathematical Functions, Dover, 1972. | |
29 | |
30 % Peter R. Shaw, Woods Hole Oceanographic Institution | |
31 % Woods Hole, MA 02543 pshaw@whoi.edu | |
32 % Leslie Rosenfeld, MBARI | |
33 % Last revision: Peter Shaw, Oct 1992: fsolve with version 4 | |
34 | |
35 % ** Calls function CHIAUX ** | |
36 % Computed using the Incomplete Gamma function, | |
37 % as given by Press et al. (Recipes) eq. (6.2.17) | |
38 | |
39 [mP,nP]=size(P); | |
40 [mv,nv]=size(v); | |
41 if mP~=mv | nP~=nv, | |
42 if mP==1 & nP==1, | |
43 P=P*ones(mv,nv); | |
44 elseif mv==1 & nv==1, | |
45 v=v*ones(mP,nP); | |
46 else | |
47 error('P and v must be the same size') | |
48 end | |
49 end | |
50 [m,n]=size(P); X2 = zeros(m,n); | |
51 for i=1:m, | |
52 for j=1:n, | |
53 if v(i,j)<=10, | |
54 x0=P(i,j)*v(i,j); | |
55 else | |
56 x0=v(i,j); | |
57 end | |
58 % Note: "old" and "new" calls to fsolve may or may not follow | |
59 % Matlab version 3.5 -> version 4 (so I'm keeping the old call around...) | |
60 % X2(i,j) = fsolve('chiaux',x0,zeros(16,1),[v(i,j),P(i,j)]); %(old call) | |
61 X2(i,j) = fsolve('chiaux',x0,zeros(16,1),[],[v(i,j),P(i,j)]); | |
62 end | |
63 end |