comparison reproduce_AES53rd/rerun_svm_table3/svm_table3.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 % ---
2 % this script trains similarity measures using RBM and SVM as in Table 3
3 % please note that the RBM training is a probabilistic process.
4 % Here, training is done on 20 random initialisations of RBM features ,
5 % the test results corresponding to the RBM with the best training result are then
6 % returned.
7 % ---
8
9 % ---
10 % vary feature parameters of mixed features
11 % ---
12
13 global globalvars;
14 globalvars.debug = 3;
15
16 ftype = 'MTTMixedFeatureSonRBM'; %'MTTMixedFeatureStober11Genre';
17
18 fparams_all = struct(...
19 ... % ---
20 ... % these are SONfeatRaw parameters
21 ... % ---
22 'son_filename',{{'rel_music_raw_features+simdata_ISMIR12.mat'}}, ...
23 'son_conf', 1:5, ...
24 ... % ---
25 ... % Following: RBM params
26 ... % ---
27 'norm_pre_rbm', 0, ... % norm before RBM?
28 'norm_post_rbm',0, ... % norm before RBM?
29 'rbm_hidNum',[1000], ... % number of hidden units % 500
30 'rbm_eNum', 100, ...
31 'rbm_bNum', 1, ...
32 'rbm_gNum', 1, ...
33 'rbm_lrate1' , [0.05], ... % initial learning rate % 0.01
34 'rbm_lrate2', [0.10], ... % learning rate, %0.05
35 'rbm_momentum', [0.1], ... % 0.5
36 'rbm_cost', [0.00002], ... % cost function
37 'rbm_N', 50, ...
38 'rbm_MAX_INC', 10 ...
39 );
40
41 % ---
42 % vary parameters for svmlight
43 % ---
44
45 trainparams_all = struct(...
46 'C', [1], ...%
47 'weighted', [0], ...
48 'dataset', {{'comp_partBinData_ISMIR12_01.mat'}}, ...
49 'inctrain', 0 ...
50 ... % this optional
51 ... %'deltafun', {{'conv_subspace_delta'}}, ...
52 ... %'deltafun_params', {{{[1],[0]},{[5],[1]},{[10],[1]},{[20],[1]},{[30],[1]},{[50],[1]},{[70],[1]}}} ... % normalisation improves results
53 );
54
55 % set training function
56 trainfun = @svmlight_wrapper;
57
58
59 % create test directory
60 akt_dir = migrate_to_test_dir();
61
62
63 % call eval
64 out = test_generic_features_parameters_crossval...
65 (fparams_all, trainparams_all, trainfun, ftype);
66
67 % ---
68 % check training results and select best RBM according to trainign data
69 % ---
70 svm_train_performances = [out(:).mean_ok_train];
71 [bestTrain, idx] = max(svm_train_performances(1,:));
72 result = out(idx);
73
74 % get corresponding test performance
75 svm_test_performance = result.mean_ok_test(1,:);
76 fprintf('SVM RBM Test/Train Result=%f / %f\n',svm_test_performance*100,bestTrain*100);