Mercurial > hg > camir-aes2014
comparison toolboxes/distance_learning/mlr/separationOracle/separationOracleMRR.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [Y, Loss] = separationOracleMRR(q, D, pos, neg, k) | |
2 % | |
3 % [Y,Loss] = separationOracleMRR(q, D, pos, neg, k) | |
4 % | |
5 % q = index of the query point | |
6 % D = the current distance matrix | |
7 % pos = indices of relevant results for q | |
8 % neg = indices of irrelevant results for q | |
9 % k = length of the list to consider (unused in MRR) | |
10 % | |
11 % Y is a permutation 1:n corresponding to the maximally | |
12 % violated constraint | |
13 % | |
14 % Loss is the loss for Y, in this case, 1-MRR(Y) | |
15 | |
16 | |
17 % First, sort the documents in descending order of W'Phi(q,x) | |
18 % Phi = - (X(q) - X(x)) * (X(q) - X(x))' | |
19 | |
20 % Sort the positive documents | |
21 ScorePos = - D(pos,q); | |
22 [Vpos, Ipos] = sort(full(ScorePos'), 'descend'); | |
23 Ipos = pos(Ipos); | |
24 | |
25 % Sort the negative documents | |
26 ScoreNeg = -D(neg,q); | |
27 [Vneg, Ineg] = sort(full(ScoreNeg'), 'descend'); | |
28 Ineg = neg(Ineg); | |
29 | |
30 % Now, solve the DP for the interleaving | |
31 | |
32 numPos = length(pos); | |
33 numNeg = length(neg); | |
34 n = numPos + numNeg; | |
35 | |
36 cVpos = cumsum(Vpos); | |
37 cVneg = cumsum(Vneg); | |
38 | |
39 | |
40 % Algorithm: | |
41 % For each RR score in 1/1, 1/2, ..., 1/(numNeg+1) | |
42 % Calculate maximum discriminant score for that precision level | |
43 MRR = ((1:(numNeg+1)).^-1)'; | |
44 | |
45 | |
46 Discriminant = zeros(numNeg+1, 1); | |
47 Discriminant(end) = numPos * cVneg(end) - numNeg * cVpos(end); | |
48 | |
49 % For the rest of the positions, we're interleaving one more negative | |
50 % example into the 2nd-through-last positives | |
51 offsets = 1 + binarysearch(Vneg, Vpos(2:end)); | |
52 | |
53 % How many of the remaining positives go before Vneg(a)? | |
54 NegsBefore = -bsxfun(@ge, offsets, (1:length(Vpos))'); | |
55 | |
56 % For the last position, all negatives come before all positives | |
57 NegsBefore(:,numNeg+1) = numNeg; | |
58 | |
59 Discriminant(1:numNeg) = -2 * (offsets .* Vneg - cVpos(offsets)); | |
60 Discriminant = sum(Discriminant) - cumsum(Discriminant) + Discriminant; | |
61 | |
62 | |
63 % Normalize discriminant scores | |
64 Discriminant = Discriminant / (numPos * numNeg); | |
65 [s, x] = max(Discriminant - MRR); | |
66 | |
67 % Now we know that there are x-1 relevant docs in the max ranking | |
68 % Construct Y from NegsBefore(x,:) | |
69 | |
70 Y = nan * ones(n,1); | |
71 Y((1:numPos)' + sum(NegsBefore(:,x:end),2)) = Ipos; | |
72 Y(isnan(Y)) = Ineg; | |
73 | |
74 % Compute loss for this list | |
75 Loss = 1 - MRR(x); | |
76 end | |
77 |