comparison toolboxes/distance_learning/mlr/rmlr_demo.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function rmlr_demo()
2
3 display('Loading Wine data');
4 load Wine;
5
6 noisedim = 96;
7 [d,n] = size(X);
8 d = d + noisedim;
9
10 %create covariance matrix
11 var = randn(noisedim); var = var'*var;
12 noise = sqrtm(var)* randn(noisedim, n);
13 X = [X; noise];
14
15 % z-score the input dimensions
16 display('z-scoring features');
17 X = zscore(X')';
18
19 display('Generating a 80/20 training/test split');
20 P = randperm(n);
21 Xtrain = X(:,P(1:floor(0.8 * n)));
22 Ytrain = Y(P(1:floor(0.8*n)));
23 Xtest = X(:,P((1+floor(0.8*n)):end));
24 Ytest = Y(P((1+floor(0.8*n)):end));
25
26 C = 1e2;
27 lam = 0.5;
28
29 display(sprintf('Training with C=%.2e, Delta=MAP', C));
30 %learn metric with R-MLR
31 [W_rmlr, Xi, Diagnostics_rmlr] = rmlr_train(Xtrain, Ytrain, C, 'map',3,1,0,0,lam);
32
33 %learn metric with MLR
34 [W_mlr, Xi, Diagnostics_mlr] = mlr_train(Xtrain, Ytrain, C, 'map');
35
36 display('Test performance in the native (normalized) metric');
37 mlr_test(eye(d), 3, Xtrain, Ytrain, Xtest, Ytest)
38
39 display('Test performance with R-MLR metric');
40 mlr_test(W_rmlr, 3, Xtrain, Ytrain, Xtest, Ytest)
41
42 display('Test performance with MLR metric');
43 mlr_test(W_mlr, 3, Xtrain, Ytrain, Xtest, Ytest)
44
45 % Scatter-plot
46 figure;
47 subplot(1,3,1), drawData(eye(d), Xtrain, Ytrain, Xtest, Ytest), title('Native metric (z-scored)');
48 subplot(1,3,2), drawData(W_mlr, Xtrain, Ytrain, Xtest, Ytest), title('Learned metric (MLR)');
49 subplot(1,3,3), drawData(W_rmlr, Xtrain, Ytrain, Xtest, Ytest), title('Learned metric (RMLR)');
50
51 figure;
52 subplot(121), imagesc(W_mlr), title('W: MLR');
53 subplot(122), imagesc(W_rmlr), title('W: RMLR');
54 Diagnostics_rmlr
55 Diagnostics_mlr
56
57 end
58
59
60 function drawData(W, Xtrain, Ytrain, Xtest, Ytest);
61
62 n = length(Ytrain);
63 m = length(Ytest);
64
65 if size(W,2) == 1
66 W = diag(W);
67 end
68 % PCA the learned metric
69 Z = [Xtrain Xtest];
70 A = Z' * W * Z;
71 [v,d] = eig(A);
72
73 L = (d.^0.5) * v';
74 L = L(1:2,:);
75
76 % Draw training points
77 hold on;
78 trmarkers = {'b+', 'r+', 'g+'};
79 tsmarkers = {'bo', 'ro', 'go'};
80 for i = min(Ytrain):max(Ytrain)
81 points = find(Ytrain == i);
82 scatter(L(1,points), L(2,points), trmarkers{i});
83 points = n + find(Ytest == i);
84 scatter(L(1,points), L(2,points), tsmarkers{i});
85 end
86 legend({'Training', 'Test'});
87 end