Mercurial > hg > camir-aes2014
comparison toolboxes/distance_learning/mlr/regularize/regularizeMKLDOD.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function r = regularizeMKLDOD(W, X, gradient) | |
2 % | |
3 % r = regularizeMKLDOD(W, X, gradient) | |
4 % | |
5 % | |
6 | |
7 [d,n,m] = size(X); | |
8 | |
9 if gradient | |
10 r = zeros(m,m,d); | |
11 for i = 1:m | |
12 r(i,i,:) = diag(X(:,:,i)); | |
13 for j = (i+1):m | |
14 r(i,j,:) = diag(X(:,:,i)) + diag(X(:,:,j)); | |
15 end | |
16 end | |
17 else | |
18 r = 0; | |
19 for i = 1:m | |
20 r = r + squeeze(W(i,i,:))' * diag(X(:,:,i)); | |
21 for j = (i+1):m | |
22 r = r + squeeze(W(i,j,:))' * (diag(X(:,:,i)) + diag(X(:,:,j))); | |
23 end | |
24 end | |
25 end | |
26 end |