comparison toolboxes/bioakustik_tools/conversion/extract_buchfink_xls.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1
2
3 %seglengths
4 %vols
5 %periods
6 %name
7
8 %
9 % datlen=size(data,1);
10 % maxseglen=10;
11 % clear segvol;
12 % clear seglengths;
13 % clear repetitions;
14 % clear name;
15 %
16 % filectr=0;
17 % lineptr=15;
18 %
19 % while lineptr <= size(textdata,1)
20 % if ~strcmp('',textdata{lineptr,1})
21 % path = textdata{lineptr,1};
22 % end
23 % if ~strcmp('',textdata{lineptr,2})
24 % filectr=filectr+1;
25 % name{filectr} = strcat(path,'\',textdata{lineptr,2});
26 % datapos=lineptr-14;
27 %
28 % segctr=0;
29 % while ~isnan(data(datapos,2))&& datapos < datlen
30 % segctr=segctr+1;
31 % seglengths(filectr,segctr)= data(datapos,2);
32 % if ~isnan(data(datapos,3))
33 % repetitions(filectr,segctr)=data(datapos,3);
34 % end
35 % segvol(filectr,segctr)=data(datapos,4);
36 % datapos=datapos+1;
37 % lineptr = lineptr+1;
38 % end
39 % end
40 % lineptr = lineptr+1;
41 % end
42
43
44 compl_len=sum(seglengths,2);%ins secs
45 compl_std=std(compl_len);
46 compl_mean=mean(compl_len);
47
48 numsegs=seglengths>0;
49 numsegs=sum(numsegs,2);
50 meannumsegs=mean(numsegs)
51 minnumsegs=min(numsegs)
52 maxnumsegs=max(numsegs)
53
54 for i=1:maxnumsegs %segmentlänge, betrachtet werden jeweils alle segs
55 % mit ausreichender länge
56 valid_cols=find(numsegs>=i);
57 mean_seglen(i)=mean(seglengths(valid_cols,i));
58 min_seglen(i)=min(seglengths(valid_cols,i));
59 max_seglen(i)=max(seglengths(valid_cols,i));
60 std_seglen(i)=std(seglengths(valid_cols,i));%in s
61 end
62
63 % valid_cols=find(numsegs==floor(meannumsegs));
64 % for i=1:floor(mean(numsegs)) %segmentlänge, betrachtet werden jeweils alle segs
65 % % mit genau floor(mittlerer) länge
66 % mean_seglen2(i)=mean(seglengths(valid_cols,i));
67 % min_seglen2(i)=min(seglengths(valid_cols,i));
68 % max_seglen2(i)=max(seglengths(valid_cols,i));
69 % std_seglen2(i)=std(seglengths(valid_cols,i));%in s
70 % end
71
72 %längen
73 seglen_all=reshape(seglengths,115*6,1);
74 goodlens=find(seglen_all>0);
75 mean_seglen_all=mean(seglen_all(goodlens));
76 std_seglen_all=std(seglen_all(goodlens));
77 for i=1:maxnumsegs
78 segs(i)=sum(numsegs==i);
79 end
80
81 period_segs=sum(repetitions>0,2);
82 for i=1:maxnumsegs
83 havenumperiodsegs(i)=sum(period_segs==i);
84 end
85 segs_period=(repetitions>0);
86 sum((period_segs==3)&(numsegs==4))
87 sum((period_segs==2)&(numsegs==4))
88 sum(((period_segs==4)&(numsegs==5)))
89 sum(((period_segs==3)&(numsegs==5)))
90
91 better_half_ind=find((period_segs==3)&(numsegs==4));
92 better_half_len=seglengths(better_half_ind,:);
93 better_half_mean=mean(better_half_len,1);
94 better_half_std=std(better_half_len);
95
96 %wiederholungen
97 period_all=reshape(repetitions,115*6,1);
98 goodreps=find(period_all>0);
99 period_all=period_all(goodreps);
100 peri_all_mean=mean(period_all);
101 peri_all_std=std(period_all);
102
103 %frequenzen
104 freqs = repetitions./(seglengths./1000);
105 freqs_all=reshape(freqs,115*6,1);
106 freqs_all=freqs_all(find(~isnan(freqs_all) & (freqs_all>0)));
107 freqs_all_mean=mean(freqs_all);
108 freqs_all_std=std(freqs_all);
109
110
111 better_h_f=repetitions(better_half_ind,2:4)./(seglengths(better_half_ind,2:4)./1000);
112 better_h_f_mean=mean(better_h_f);
113 better_h_f_std=std(better_h_f);
114 better_h_f_min=min(better_h_f);
115 better_h_f_max=max(better_h_f);
116
117 better_half2_ind=find((period_segs==4)&(numsegs==5));
118
119 better_h2_f=repetitions(better_half2_ind,2:5)./(seglengths(better_half2_ind,2:5)./1000);
120 better_h2_f_mean=mean(better_h2_f);
121 better_h2_f_std=std(better_h2_f);
122 better_h2_f_min=min(better_h2_f);
123 better_h2_f_max=max(better_h2_f);
124
125 abweichung_f=better_h_f-repmat(better_h_f_mean,size(better_h_f,1),1);
126 corrcoef(abweichung_f)
127 abweichung2_f=better_h2_f-repmat(better_h2_f_mean,size(better_h2_f,1),1);
128 corrcoef(abweichung2_f)