comparison toolboxes/SVM-light/Readme_optimization_relative_constraints.txt @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 Solving general optimization problems
2 -------------------------------------
3
4 You can use SVM-light to solve general optimzation problems of the form:
5
6 min 0.5 w*w + C sum_i C_i \xi_i
7 s.t. x_i * w > rhs_i - \xi_i
8
9 Use the option "-z o". This allows specifying a training set where the examples are the inequality constraints. For example, to specify the problem
10
11 min 0.5 w*w + 10 (1000 \xi_1 + 1 \xi_2 + 1 \xi_3 + 1 \xi_4)
12 s.t. 1 w_1 >= 0 - \xi_1
13 -2 w_1 >= 1 - \xi_2
14 2 w_3 >= 2 - \xi_3
15 2 w_2 + 1 w_3 >= 3 - \xi_4
16
17 you can use the training set
18
19 0 cost:10000 1:1
20 1 1:-2
21 2 3:2
22 3 2:3 3:1
23
24 and run
25
26 svm_learn -c 10 -z o train.dat model
27
28 The format is just like the normal SVM-light format. Each line corresponds to one inequality. However, the first element of each line is the right-hand side of the inequality. The remainder of the line specifies the left-hand side. The parameter cost:<value> is optional and lets you specify a factor by which the value of the slack variable is weighted in the objective. The general regularization parameter (10 in the example) is specified with the option -c <value> on the command line.
29
30 To classify new inequalities, you can use svm_classify in the normal way.