comparison toolboxes/MIRtoolbox1.3.2/MIRToolbox/netlabkmeans.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [centres, options, post, errlog] = netlabkmeans(centres, data, options)
2 %KMEANS Trains a k means cluster model.
3 %(Renamed NETLABKMEANS in MIRtoolbox in order to avoid conflict with
4 % statistics toolbox...)
5 %
6 % Description
7 % CENTRES = KMEANS(CENTRES, DATA, OPTIONS) uses the batch K-means
8 % algorithm to set the centres of a cluster model. The matrix DATA
9 % represents the data which is being clustered, with each row
10 % corresponding to a vector. The sum of squares error function is used.
11 % The point at which a local minimum is achieved is returned as
12 % CENTRES. The error value at that point is returned in OPTIONS(8).
13 %
14 % [CENTRES, OPTIONS, POST, ERRLOG] = KMEANS(CENTRES, DATA, OPTIONS)
15 % also returns the cluster number (in a one-of-N encoding) for each
16 % data point in POST and a log of the error values after each cycle in
17 % ERRLOG. The optional parameters have the following
18 % interpretations.
19 %
20 % OPTIONS(1) is set to 1 to display error values; also logs error
21 % values in the return argument ERRLOG. If OPTIONS(1) is set to 0, then
22 % only warning messages are displayed. If OPTIONS(1) is -1, then
23 % nothing is displayed.
24 %
25 % OPTIONS(2) is a measure of the absolute precision required for the
26 % value of CENTRES at the solution. If the absolute difference between
27 % the values of CENTRES between two successive steps is less than
28 % OPTIONS(2), then this condition is satisfied.
29 %
30 % OPTIONS(3) is a measure of the precision required of the error
31 % function at the solution. If the absolute difference between the
32 % error functions between two successive steps is less than OPTIONS(3),
33 % then this condition is satisfied. Both this and the previous
34 % condition must be satisfied for termination.
35 %
36 % OPTIONS(14) is the maximum number of iterations; default 100.
37 %
38 % See also
39 % GMMINIT, GMMEM
40 %
41
42 % Copyright (c) Ian T Nabney (1996-2001)
43
44 [ndata, data_dim] = size(data);
45 [ncentres, dim] = size(centres);
46
47 if dim ~= data_dim
48 error('Data dimension does not match dimension of centres')
49 end
50
51 if (ncentres > ndata)
52 error('More centres than data')
53 end
54
55 % Sort out the options
56 if (options(14))
57 niters = options(14);
58 else
59 niters = 100;
60 end
61
62 store = 0;
63 if (nargout > 3)
64 store = 1;
65 errlog = zeros(1, niters);
66 end
67
68 % Check if centres and posteriors need to be initialised from data
69 if (options(5) == 1)
70 % Do the initialisation
71 perm = randperm(ndata);
72 perm = perm(1:ncentres);
73
74 % Assign first ncentres (permuted) data points as centres
75 centres = data(perm, :);
76 end
77 % Matrix to make unit vectors easy to construct
78 id = eye(ncentres);
79
80 % Main loop of algorithm
81 for n = 1:niters
82
83 % Save old centres to check for termination
84 old_centres = centres;
85
86 % Calculate posteriors based on existing centres
87 d2 = dist2(data, centres);
88 % Assign each point to nearest centre
89 [minvals, index] = min(d2', [], 1);
90 post = id(index,:);
91
92 num_points = sum(post, 1);
93 % Adjust the centres based on new posteriors
94 for j = 1:ncentres
95 if (num_points(j) > 0)
96 centres(j,:) = sum(data(find(post(:,j)),:), 1)/num_points(j);
97 end
98 end
99
100 % Error value is total squared distance from cluster centres
101 e = sum(minvals);
102 if store
103 errlog(n) = e;
104 end
105 if options(1) > 0
106 fprintf(1, 'Cycle %4d Error %11.6f\n', n, e);
107 end
108
109 if n > 1
110 % Test for termination
111 if max(max(abs(centres - old_centres))) < options(2) & ...
112 abs(old_e - e) < options(3)
113 options(8) = e;
114 return;
115 end
116 end
117 old_e = e;
118 end
119
120 % If we get here, then we haven't terminated in the given number of
121 % iterations.
122 options(8) = e;
123 if (options(1) >= 0)
124 disp(maxitmess);
125 end
126