comparison toolboxes/FullBNT-1.0.7/netlabKPM/mlphdotv_weighted.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function hdv = mlphdotv_weighted(net, x, t, eso_w, v)
2 %MLPHDOTV Evaluate the product of the data Hessian with a vector.
3 %
4 % Description
5 %
6 % HDV = MLPHDOTV(NET, X, T, V) takes an MLP network data structure NET,
7 % together with the matrix X of input vectors, the matrix T of target
8 % vectors and an arbitrary row vector V whose length equals the number
9 % of parameters in the network, and returns the product of the data-
10 % dependent contribution to the Hessian matrix with V. The
11 % implementation is based on the R-propagation algorithm of
12 % Pearlmutter.
13 %
14 % See also
15 % MLP, MLPHESS, HESSCHEK
16 %
17
18 % Copyright (c) Ian T Nabney (1996-9)
19
20 % Check arguments for consistency
21 errstring = consist(net, 'mlp', x, t);
22 if ~isempty(errstring);
23 error(errstring);
24 end
25
26 ndata = size(x, 1);
27
28 [y, z] = mlpfwd(net, x); % Standard forward propagation.
29 zprime = (1 - z.*z); % Hidden unit first derivatives.
30 zpprime = -2.0*z.*zprime; % Hidden unit second derivatives.
31
32 vnet = mlpunpak(net, v); % Unpack the v vector.
33
34 % Do the R-forward propagation.
35
36 ra1 = x*vnet.w1 + ones(ndata, 1)*vnet.b1;
37 rz = zprime.*ra1;
38 ra2 = rz*net.w2 + z*vnet.w2 + ones(ndata, 1)*vnet.b2;
39
40 switch net.actfn
41 case 'softmax' % Softmax outputs
42
43 nout = size(t, 2);
44 ry = y.*ra2 - y.*(sum(y.*ra2, 2)*ones(1, nout));
45
46 otherwise
47 error(['Unknown activation function ', net.actfn]);
48 end
49
50 % Evaluate a weighted delta for the output units.
51 temp = y - t;
52 for m=1:ndata,
53 delout(m,:)=eso_w(m,1)*temp(m,:);
54 end
55 clear temp;
56
57 % Do the standard backpropagation.
58
59 delhid = zprime.*(delout*net.w2');
60
61 % Now do the R-backpropagation.
62
63 rdelhid = zpprime.*ra1.*(delout*net.w2') + zprime.*(delout*vnet.w2') + ...
64 zprime.*(ry*net.w2');
65
66 % Finally, evaluate the components of hdv and then merge into long vector.
67
68 hw1 = x'*rdelhid;
69 hb1 = sum(rdelhid, 1);
70 hw2 = z'*ry + rz'*delout;
71 hb2 = sum(ry, 1);
72
73 hdv = [hw1(:)', hb1, hw2(:)', hb2];