Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlabKPM/mlpgrad_weighted.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [g, gdata, gprior] = mlpgrad_weighted(net, x, t, eso_w) | |
2 %MLPGRAD Evaluate gradient of error function for 2-layer network. | |
3 % | |
4 % Description | |
5 % G = MLPGRAD(NET, X, T) takes a network data structure NET together | |
6 % with a matrix X of input vectors and a matrix T of target vectors, | |
7 % and evaluates the gradient G of the error function with respect to | |
8 % the network weights. The error funcion corresponds to the choice of | |
9 % output unit activation function. Each row of X corresponds to one | |
10 % input vector and each row of T corresponds to one target vector. | |
11 % | |
12 % [G, GDATA, GPRIOR] = MLPGRAD(NET, X, T) also returns separately the | |
13 % data and prior contributions to the gradient. In the case of multiple | |
14 % groups in the prior, GPRIOR is a matrix with a row for each group and | |
15 % a column for each weight parameter. | |
16 % | |
17 % See also | |
18 % MLP, MLPPAK, MLPUNPAK, MLPFWD, MLPERR, MLPBKP | |
19 % | |
20 | |
21 % Copyright (c) Ian T Nabney (1996-9) | |
22 | |
23 % Check arguments for consistency | |
24 errstring = consist(net, 'mlp', x, t); | |
25 if ~isempty(errstring); | |
26 error(errstring); | |
27 end | |
28 [y, z] = mlpfwd(net, x); | |
29 temp = y - t; | |
30 ndata = size(x, 1); | |
31 for m=1:ndata, | |
32 delout(m,:)=eso_w(m,1)*temp(m,:); | |
33 end | |
34 clear temp; | |
35 gdata = mlpbkp(net, x, z, delout); | |
36 | |
37 [g, gdata, gprior] = gbayes(net, gdata); |