comparison toolboxes/FullBNT-1.0.7/netlabKPM/evidence_weighted.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [net, gamma, logev] = evidence_weighted(net, x, t, eso_w, num)
2 %EVIDENCE Re-estimate hyperparameters using evidence approximation.
3 %
4 % Description
5 % [NET] = EVIDENCE(NET, X, T) re-estimates the hyperparameters ALPHA
6 % and BETA by applying Bayesian re-estimation formulae for NUM
7 % iterations. The hyperparameter ALPHA can be a simple scalar
8 % associated with an isotropic prior on the weights, or can be a vector
9 % in which each component is associated with a group of weights as
10 % defined by the INDEX matrix in the NET data structure. These more
11 % complex priors can be set up for an MLP using MLPPRIOR. Initial
12 % values for the iterative re-estimation are taken from the network
13 % data structure NET passed as an input argument, while the return
14 % argument NET contains the re-estimated values.
15 %
16 % [NET, GAMMA, LOGEV] = EVIDENCE(NET, X, T, NUM) allows the re-
17 % estimation formula to be applied for NUM cycles in which the re-
18 % estimated values for the hyperparameters from each cycle are used to
19 % re-evaluate the Hessian matrix for the next cycle. The return value
20 % GAMMA is the number of well-determined parameters and LOGEV is the
21 % log of the evidence.
22 %
23 % See also
24 % MLPPRIOR, NETGRAD, NETHESS, DEMEV1, DEMARD
25 %
26
27 % Copyright (c) Ian T Nabney (1996-9)
28
29 errstring = consist(net, '', x, t);
30 if ~isempty(errstring)
31 error(errstring);
32 end
33
34 ndata = size(x, 1);
35 if nargin == 4
36 num = 1;
37 end
38
39 if isfield(net,'beta')
40 beta = net.beta;
41 else
42 beta = 1;
43 end;
44
45 % Extract weights from network
46 pakstr = [net.type, 'pak'];
47 w = feval(pakstr, net);
48
49 % Evaluate data-dependent contribution to the Hessian matrix.
50 [h, dh] = nethess_weighted(w, net, x, t, eso_w);
51
52 % Now set the negative eigenvalues to zero.
53 [evec, evl] = eig(dh);
54 evl = evl.*(evl > 0);
55 % safe_evl is used to avoid taking log of zero
56 safe_evl = evl + eps.*(evl <= 0);
57
58 % Do the re-estimation.
59 for k = 1 : num
60 [e, edata, eprior] = neterr_weighted(w, net, x, t, eso_w);
61 h = nethess_weighted(w, net, x, t, eso_w, dh);
62 % Re-estimate alpha.
63 if size(net.alpha) == [1 1]
64 % Evaluate number of well-determined parameters.
65 if k == 1
66 % Form vector of eigenvalues
67 evl = diag(evl);
68 safe_evl = diag(safe_evl);
69 end
70 B = beta*evl;
71 gamma = sum(B./(B + net.alpha));
72 net.alpha = 0.5*gamma/eprior;
73
74 % Partially evaluate log evidence
75 logev = e - 0.5*sum(log(safe_evl)) + 0.5*net.nwts*log(net.alpha) - ...
76 0.5*ndata*log(2*pi);
77 else
78 ngroups = size(net.alpha, 1);
79 gams = zeros(1, ngroups);
80 logas = zeros(1, ngroups);
81 traces = zeros(1, ngroups);
82 % Reconstruct data hessian with negative eigenvalues set to zero.
83 dh = evec*evl*evec';
84 hinv = inv(nethess_weighted(w, net, x, t, eso_w, dh));
85 for m = 1 : ngroups
86 group_nweights = sum(net.index(:, m));
87 gams(m) = group_nweights - ...
88 net.alpha(m)*sum(diag(hinv).*net.index(:,m));
89 net.alpha(m) = real(gams(m)/(2*eprior(m)));
90 % Weight alphas by number of weights in group
91 logas(m) = 0.5*group_nweights*log(net.alpha(m));
92 % Compute sum of evalues corresponding to group
93 traces(m) = sum(log(safe_evl*net.index(:,m)));
94 end
95 gamma = sum(gams, 2);
96 logev = e - 0.5*sum(traces) + sum(logas) - 0.5*ndata*log(2*pi);
97 end
98 % Re-estimate beta.
99 if isfield(net, 'beta')
100 net.beta = 0.5*(net.nout*ndata - gamma)/edata;
101 end
102 logev = logev + 0.5*ndata*log(beta);
103 end
104