comparison toolboxes/FullBNT-1.0.7/netlab3.3/rbfprior.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [mask, prior] = rbfprior(rbfunc, nin, nhidden, nout, aw2, ab2)
2 %RBFPRIOR Create Gaussian prior and output layer mask for RBF.
3 %
4 % Description
5 % [MASK, PRIOR] = RBFPRIOR(RBFUNC, NIN, NHIDDEN, NOUT, AW2, AB2)
6 % generates a vector MASK that selects only the output layer weights.
7 % This is because most uses of RBF networks in a Bayesian context have
8 % fixed basis functions with the output layer as the only adjustable
9 % parameters. In particular, the Neuroscale output error function is
10 % designed to work only with this mask.
11 %
12 % The return value PRIOR is a data structure, with fields PRIOR.ALPHA
13 % and PRIOR.INDEX, which specifies a Gaussian prior distribution for
14 % the network weights in an RBF network. The parameters AW2 and AB2 are
15 % all scalars and represent the regularization coefficients for two
16 % groups of parameters in the network corresponding to second-layer
17 % weights, and second-layer biases respectively. Then PRIOR.ALPHA
18 % represents a column vector of length 2 containing the parameters, and
19 % PRIOR.INDEX is a matrix specifying which weights belong in each
20 % group. Each column has one element for each weight in the matrix,
21 % using the standard ordering as defined in RBFPAK, and each element is
22 % 1 or 0 according to whether the weight is a member of the
23 % corresponding group or not.
24 %
25 % See also
26 % RBF, RBFERR, RBFGRAD, EVIDENCE
27 %
28
29 % Copyright (c) Ian T Nabney (1996-2001)
30
31 nwts_layer2 = nout + (nhidden *nout);
32 switch rbfunc
33 case 'gaussian'
34 nwts_layer1 = nin*nhidden + nhidden;
35 case {'tps', 'r4logr'}
36 nwts_layer1 = nin*nhidden;
37 otherwise
38 error('Undefined activation function');
39 end
40 nwts = nwts_layer1 + nwts_layer2;
41
42 % Make a mask only for output layer
43 mask = [zeros(nwts_layer1, 1); ones(nwts_layer2, 1)];
44
45 if nargout > 1
46 % Construct prior
47 indx = zeros(nwts, 2);
48 mark2 = nwts_layer1 + (nhidden * nout);
49 indx(nwts_layer1 + 1:mark2, 1) = ones(nhidden * nout, 1);
50 indx(mark2 + 1:nwts, 2) = ones(nout, 1);
51
52 prior.index = indx;
53 prior.alpha = [aw2, ab2]';
54 end