Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/rbfbkp.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function g = rbfbkp(net, x, z, n2, deltas) | |
2 %RBFBKP Backpropagate gradient of error function for RBF network. | |
3 % | |
4 % Description | |
5 % G = RBFBKP(NET, X, Z, N2, DELTAS) takes a network data structure NET | |
6 % together with a matrix X of input vectors, a matrix Z of hidden unit | |
7 % activations, a matrix N2 of the squared distances between centres and | |
8 % inputs, and a matrix DELTAS of the gradient of the error function | |
9 % with respect to the values of the output units (i.e. the summed | |
10 % inputs to the output units, before the activation function is | |
11 % applied). The return value is the gradient G of the error function | |
12 % with respect to the network weights. Each row of X corresponds to one | |
13 % input vector. | |
14 % | |
15 % This function is provided so that the common backpropagation | |
16 % algorithm can be used by RBF network models to compute gradients for | |
17 % the output values (in RBFDERIV) as well as standard error functions. | |
18 % | |
19 % See also | |
20 % RBF, RBFGRAD, RBFDERIV | |
21 % | |
22 | |
23 % Copyright (c) Ian T Nabney (1996-2001) | |
24 | |
25 % Evaluate second-layer gradients. | |
26 gw2 = z'*deltas; | |
27 gb2 = sum(deltas); | |
28 | |
29 % Evaluate hidden unit gradients | |
30 delhid = deltas*net.w2'; | |
31 | |
32 gc = zeros(net.nhidden, net.nin); | |
33 ndata = size(x, 1); | |
34 t1 = ones(ndata, 1); | |
35 t2 = ones(1, net.nin); | |
36 % Switch on activation function type | |
37 switch net.actfn | |
38 | |
39 case 'gaussian' % Gaussian | |
40 delhid = (delhid.*z); | |
41 % A loop seems essential, so do it with the shortest index vector | |
42 if (net.nin < net.nhidden) | |
43 for i = 1:net.nin | |
44 gc(:,i) = (sum(((x(:,i)*ones(1, net.nhidden)) - ... | |
45 (ones(ndata, 1)*(net.c(:,i)'))).*delhid, 1)./net.wi)'; | |
46 end | |
47 else | |
48 for i = 1:net.nhidden | |
49 gc(i,:) = sum((x - (t1*(net.c(i,:)))./net.wi(i)).*(delhid(:,i)*t2), 1); | |
50 end | |
51 end | |
52 gwi = sum((n2.*delhid)./(2.*(ones(ndata, 1)*(net.wi.^2))), 1); | |
53 | |
54 case 'tps' % Thin plate spline activation function | |
55 delhid = delhid.*(1+log(n2+(n2==0))); | |
56 for i = 1:net.nhidden | |
57 gc(i,:) = sum(2.*((t1*(net.c(i,:)) - x)).*(delhid(:,i)*t2), 1); | |
58 end | |
59 % widths are not adjustable in this model | |
60 gwi = []; | |
61 case 'r4logr' % r^4 log r activation function | |
62 delhid = delhid.*(n2.*(1+2.*log(n2+(n2==0)))); | |
63 for i = 1:net.nhidden | |
64 gc(i,:) = sum(2.*((t1*(net.c(i,:)) - x)).*(delhid(:,i)*t2), 1); | |
65 end | |
66 % widths are not adjustable in this model | |
67 gwi = []; | |
68 otherwise | |
69 error('Unknown activation function in rbfgrad') | |
70 end | |
71 | |
72 g = [gc(:)', gwi, gw2(:)', gb2]; |