Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/olgd.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [net, options, errlog, pointlog] = olgd(net, options, x, t) | |
2 %OLGD On-line gradient descent optimization. | |
3 % | |
4 % Description | |
5 % [NET, OPTIONS, ERRLOG, POINTLOG] = OLGD(NET, OPTIONS, X, T) uses on- | |
6 % line gradient descent to find a local minimum of the error function | |
7 % for the network NET computed on the input data X and target values T. | |
8 % A log of the error values after each cycle is (optionally) returned | |
9 % in ERRLOG, and a log of the points visited is (optionally) returned | |
10 % in POINTLOG. Because the gradient is computed on-line (i.e. after | |
11 % each pattern) this can be quite inefficient in Matlab. | |
12 % | |
13 % The error function value at final weight vector is returned in | |
14 % OPTIONS(8). | |
15 % | |
16 % The optional parameters have the following interpretations. | |
17 % | |
18 % OPTIONS(1) is set to 1 to display error values; also logs error | |
19 % values in the return argument ERRLOG, and the points visited in the | |
20 % return argument POINTSLOG. If OPTIONS(1) is set to 0, then only | |
21 % warning messages are displayed. If OPTIONS(1) is -1, then nothing is | |
22 % displayed. | |
23 % | |
24 % OPTIONS(2) is the precision required for the value of X at the | |
25 % solution. If the absolute difference between the values of X between | |
26 % two successive steps is less than OPTIONS(2), then this condition is | |
27 % satisfied. | |
28 % | |
29 % OPTIONS(3) is the precision required of the objective function at the | |
30 % solution. If the absolute difference between the error functions | |
31 % between two successive steps is less than OPTIONS(3), then this | |
32 % condition is satisfied. Both this and the previous condition must be | |
33 % satisfied for termination. Note that testing the function value at | |
34 % each iteration roughly halves the speed of the algorithm. | |
35 % | |
36 % OPTIONS(5) determines whether the patterns are sampled randomly with | |
37 % replacement. If it is 0 (the default), then patterns are sampled in | |
38 % order. | |
39 % | |
40 % OPTIONS(6) determines if the learning rate decays. If it is 1 then | |
41 % the learning rate decays at a rate of 1/T. If it is 0 (the default) | |
42 % then the learning rate is constant. | |
43 % | |
44 % OPTIONS(9) should be set to 1 to check the user defined gradient | |
45 % function. | |
46 % | |
47 % OPTIONS(10) returns the total number of function evaluations | |
48 % (including those in any line searches). | |
49 % | |
50 % OPTIONS(11) returns the total number of gradient evaluations. | |
51 % | |
52 % OPTIONS(14) is the maximum number of iterations (passes through the | |
53 % complete pattern set); default 100. | |
54 % | |
55 % OPTIONS(17) is the momentum; default 0.5. | |
56 % | |
57 % OPTIONS(18) is the learning rate; default 0.01. | |
58 % | |
59 % See also | |
60 % GRADDESC | |
61 % | |
62 | |
63 % Copyright (c) Ian T Nabney (1996-2001) | |
64 | |
65 % Set up the options. | |
66 if length(options) < 18 | |
67 error('Options vector too short') | |
68 end | |
69 | |
70 if (options(14)) | |
71 niters = options(14); | |
72 else | |
73 niters = 100; | |
74 end | |
75 | |
76 % Learning rate: must be positive | |
77 if (options(18) > 0) | |
78 eta = options(18); | |
79 else | |
80 eta = 0.01; | |
81 end | |
82 % Save initial learning rate for annealing | |
83 lr = eta; | |
84 % Momentum term: allow zero momentum | |
85 if (options(17) >= 0) | |
86 mu = options(17); | |
87 else | |
88 mu = 0.5; | |
89 end | |
90 | |
91 pakstr = [net.type, 'pak']; | |
92 unpakstr = [net.type, 'unpak']; | |
93 | |
94 % Extract initial weights from the network | |
95 w = feval(pakstr, net); | |
96 | |
97 display = options(1); | |
98 | |
99 % Work out if we need to compute f at each iteration. | |
100 % Needed if display results or if termination | |
101 % criterion requires it. | |
102 fcneval = (display | options(3)); | |
103 | |
104 % Check gradients | |
105 if (options(9)) | |
106 feval('gradchek', w, 'neterr', 'netgrad', net, x, t); | |
107 end | |
108 | |
109 dwold = zeros(1, length(w)); | |
110 fold = 0; % Must be initialised so that termination test can be performed | |
111 ndata = size(x, 1); | |
112 | |
113 if fcneval | |
114 fnew = neterr(w, net, x, t); | |
115 options(10) = options(10) + 1; | |
116 fold = fnew; | |
117 end | |
118 | |
119 j = 1; | |
120 if nargout >= 3 | |
121 errlog(j, :) = fnew; | |
122 if nargout == 4 | |
123 pointlog(j, :) = w; | |
124 end | |
125 end | |
126 | |
127 % Main optimization loop. | |
128 while j <= niters | |
129 wold = w; | |
130 if options(5) | |
131 % Randomise order of pattern presentation: with replacement | |
132 pnum = ceil(rand(ndata, 1).*ndata); | |
133 else | |
134 pnum = 1:ndata; | |
135 end | |
136 for k = 1:ndata | |
137 grad = netgrad(w, net, x(pnum(k),:), t(pnum(k),:)); | |
138 if options(6) | |
139 % Let learning rate decrease as 1/t | |
140 lr = eta/((j-1)*ndata + k); | |
141 end | |
142 dw = mu*dwold - lr*grad; | |
143 w = w + dw; | |
144 dwold = dw; | |
145 end | |
146 options(11) = options(11) + 1; % Increment gradient evaluation count | |
147 if fcneval | |
148 fold = fnew; | |
149 fnew = neterr(w, net, x, t); | |
150 options(10) = options(10) + 1; | |
151 end | |
152 if display | |
153 fprintf(1, 'Iteration %5d Error %11.8f\n', j, fnew); | |
154 end | |
155 j = j + 1; | |
156 if nargout >= 3 | |
157 errlog(j) = fnew; | |
158 if nargout == 4 | |
159 pointlog(j, :) = w; | |
160 end | |
161 end | |
162 if (max(abs(w - wold)) < options(2) & abs(fnew - fold) < options(3)) | |
163 % Termination criteria are met | |
164 options(8) = fnew; | |
165 net = feval(unpakstr, net, w); | |
166 return; | |
167 end | |
168 end | |
169 | |
170 if fcneval | |
171 options(8) = fnew; | |
172 else | |
173 % Return error on entire dataset | |
174 options(8) = neterr(w, net, x, t); | |
175 options(10) = options(10) + 1; | |
176 end | |
177 if (options(1) >= 0) | |
178 disp(maxitmess); | |
179 end | |
180 | |
181 net = feval(unpakstr, net, w); |