Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/mdndist2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function n2 = mdndist2(mixparams, t) | |
2 %MDNDIST2 Calculates squared distance between centres of Gaussian kernels and data | |
3 % | |
4 % Description | |
5 % N2 = MDNDIST2(MIXPARAMS, T) takes takes the centres of the Gaussian | |
6 % contained in MIXPARAMS and the target data matrix, T, and computes | |
7 % the squared Euclidean distance between them. If T has M rows and N | |
8 % columns, then the CENTRES field in the MIXPARAMS structure should | |
9 % have M rows and N*MIXPARAMS.NCENTRES columns: the centres in each row | |
10 % relate to the corresponding row in T. The result has M rows and | |
11 % MIXPARAMS.NCENTRES columns. The I, Jth entry is the squared distance | |
12 % from the Ith row of X to the Jth centre in the Ith row of | |
13 % MIXPARAMS.CENTRES. | |
14 % | |
15 % See also | |
16 % MDNFWD, MDNPROB | |
17 % | |
18 | |
19 % Copyright (c) Ian T Nabney (1996-2001) | |
20 % David J Evans (1998) | |
21 | |
22 % Check arguments for consistency | |
23 errstring = consist(mixparams, 'mdnmixes'); | |
24 if ~isempty(errstring) | |
25 error(errstring); | |
26 end | |
27 | |
28 ncentres = mixparams.ncentres; | |
29 dim_target = mixparams.dim_target; | |
30 ntarget = size(t, 1); | |
31 if ntarget ~= size(mixparams.centres, 1) | |
32 error('Number of targets does not match number of mixtures') | |
33 end | |
34 if size(t, 2) ~= mixparams.dim_target | |
35 error('Target dimension does not match mixture dimension') | |
36 end | |
37 | |
38 % Build t that suits parameters, that is repeat t for each centre | |
39 t = kron(ones(1, ncentres), t); | |
40 | |
41 % Do subtraction and square | |
42 diff2 = (t - mixparams.centres).^2; | |
43 | |
44 % Reshape and sum each component | |
45 diff2 = reshape(diff2', dim_target, (ntarget*ncentres))'; | |
46 n2 = sum(diff2, 2); | |
47 | |
48 % Calculate the sum of distance, and reshape | |
49 % so that we have a distance for each centre per target | |
50 n2 = reshape(n2, ncentres, ntarget)'; | |
51 |