Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/gmmsamp.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [data, label] = gmmsamp(mix, n) | |
2 %GMMSAMP Sample from a Gaussian mixture distribution. | |
3 % | |
4 % Description | |
5 % | |
6 % DATA = GSAMP(MIX, N) generates a sample of size N from a Gaussian | |
7 % mixture distribution defined by the MIX data structure. The matrix X | |
8 % has N rows in which each row represents a MIX.NIN-dimensional sample | |
9 % vector. | |
10 % | |
11 % [DATA, LABEL] = GMMSAMP(MIX, N) also returns a column vector of | |
12 % classes (as an index 1..N) LABEL. | |
13 % | |
14 % See also | |
15 % GSAMP, GMM | |
16 % | |
17 | |
18 % Copyright (c) Ian T Nabney (1996-2001) | |
19 | |
20 % Check input arguments | |
21 errstring = consist(mix, 'gmm'); | |
22 if ~isempty(errstring) | |
23 error(errstring); | |
24 end | |
25 if n < 1 | |
26 error('Number of data points must be positive') | |
27 end | |
28 | |
29 % Determine number to sample from each component | |
30 priors = rand(1, n); | |
31 | |
32 % Pre-allocate data array | |
33 data = zeros(n, mix.nin); | |
34 if nargout > 1 | |
35 label = zeros(n, 1); | |
36 end | |
37 cum_prior = 0; % Cumulative sum of priors | |
38 total_samples = 0; % Cumulative sum of number of sampled points | |
39 for j = 1:mix.ncentres | |
40 num_samples = sum(priors >= cum_prior & ... | |
41 priors < cum_prior + mix.priors(j)); | |
42 % Form a full covariance matrix | |
43 switch mix.covar_type | |
44 case 'spherical' | |
45 covar = mix.covars(j) * eye(mix.nin); | |
46 case 'diag' | |
47 covar = diag(mix.covars(j, :)); | |
48 case 'full' | |
49 covar = mix.covars(:, :, j); | |
50 case 'ppca' | |
51 covar = mix.covars(j) * eye(mix.nin) + ... | |
52 mix.U(:, :, j)* ... | |
53 (diag(mix.lambda(j, :))-(mix.covars(j)*eye(mix.ppca_dim)))* ... | |
54 (mix.U(:, :, j)'); | |
55 otherwise | |
56 error(['Unknown covariance type ', mix.covar_type]); | |
57 end | |
58 data(total_samples+1:total_samples+num_samples, :) = ... | |
59 gsamp(mix.centres(j, :), covar, num_samples); | |
60 if nargout > 1 | |
61 label(total_samples+1:total_samples+num_samples) = j; | |
62 end | |
63 cum_prior = cum_prior + mix.priors(j); | |
64 total_samples = total_samples + num_samples; | |
65 end | |
66 |