Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/glmfwd.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [y, a] = glmfwd(net, x) | |
2 %GLMFWD Forward propagation through generalized linear model. | |
3 % | |
4 % Description | |
5 % Y = GLMFWD(NET, X) takes a generalized linear model data structure | |
6 % NET together with a matrix X of input vectors, and forward propagates | |
7 % the inputs through the network to generate a matrix Y of output | |
8 % vectors. Each row of X corresponds to one input vector and each row | |
9 % of Y corresponds to one output vector. | |
10 % | |
11 % [Y, A] = GLMFWD(NET, X) also returns a matrix A giving the summed | |
12 % inputs to each output unit, where each row corresponds to one | |
13 % pattern. | |
14 % | |
15 % See also | |
16 % GLM, GLMPAK, GLMUNPAK, GLMERR, GLMGRAD | |
17 % | |
18 | |
19 % Copyright (c) Ian T Nabney (1996-2001) | |
20 | |
21 % Check arguments for consistency | |
22 errstring = consist(net, 'glm', x); | |
23 if ~isempty(errstring); | |
24 error(errstring); | |
25 end | |
26 | |
27 ndata = size(x, 1); | |
28 | |
29 a = x*net.w1 + ones(ndata, 1)*net.b1; | |
30 | |
31 switch net.outfn | |
32 | |
33 case 'linear' % Linear outputs | |
34 y = a; | |
35 | |
36 case 'logistic' % Logistic outputs | |
37 % Prevent overflow and underflow: use same bounds as glmerr | |
38 % Ensure that log(1-y) is computable: need exp(a) > eps | |
39 maxcut = -log(eps); | |
40 % Ensure that log(y) is computable | |
41 mincut = -log(1/realmin - 1); | |
42 a = min(a, maxcut); | |
43 a = max(a, mincut); | |
44 y = 1./(1 + exp(-a)); | |
45 | |
46 case 'softmax' % Softmax outputs | |
47 nout = size(a,2); | |
48 % Prevent overflow and underflow: use same bounds as glmerr | |
49 % Ensure that sum(exp(a), 2) does not overflow | |
50 maxcut = log(realmax) - log(nout); | |
51 % Ensure that exp(a) > 0 | |
52 mincut = log(realmin); | |
53 a = min(a, maxcut); | |
54 a = max(a, mincut); | |
55 temp = exp(a); | |
56 y = temp./(sum(temp, 2)*ones(1,nout)); | |
57 % Ensure that log(y) is computable | |
58 y(y<realmin) = realmin; | |
59 | |
60 otherwise | |
61 error(['Unknown activation function ', net.outfn]); | |
62 end |