comparison toolboxes/FullBNT-1.0.7/netlab3.3/evidence.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [net, gamma, logev] = evidence(net, x, t, num)
2 %EVIDENCE Re-estimate hyperparameters using evidence approximation.
3 %
4 % Description
5 % [NET] = EVIDENCE(NET, X, T) re-estimates the hyperparameters ALPHA
6 % and BETA by applying Bayesian re-estimation formulae for NUM
7 % iterations. The hyperparameter ALPHA can be a simple scalar
8 % associated with an isotropic prior on the weights, or can be a vector
9 % in which each component is associated with a group of weights as
10 % defined by the INDEX matrix in the NET data structure. These more
11 % complex priors can be set up for an MLP using MLPPRIOR. Initial
12 % values for the iterative re-estimation are taken from the network
13 % data structure NET passed as an input argument, while the return
14 % argument NET contains the re-estimated values.
15 %
16 % [NET, GAMMA, LOGEV] = EVIDENCE(NET, X, T, NUM) allows the re-
17 % estimation formula to be applied for NUM cycles in which the re-
18 % estimated values for the hyperparameters from each cycle are used to
19 % re-evaluate the Hessian matrix for the next cycle. The return value
20 % GAMMA is the number of well-determined parameters and LOGEV is the
21 % log of the evidence.
22 %
23 % See also
24 % MLPPRIOR, NETGRAD, NETHESS, DEMEV1, DEMARD
25 %
26
27 % Copyright (c) Ian T Nabney (1996-2001)
28
29 errstring = consist(net, '', x, t);
30 if ~isempty(errstring)
31 error(errstring);
32 end
33
34 ndata = size(x, 1);
35 if nargin == 3
36 num = 1;
37 end
38
39 % Extract weights from network
40 w = netpak(net);
41
42 % Evaluate data-dependent contribution to the Hessian matrix.
43 [h, dh] = nethess(w, net, x, t);
44 clear h; % To save memory when Hessian is large
45 if (~isfield(net, 'beta'))
46 local_beta = 1;
47 end
48
49 [evec, evl] = eig(dh);
50 % Now set the negative eigenvalues to zero.
51 evl = evl.*(evl > 0);
52 % safe_evl is used to avoid taking log of zero
53 safe_evl = evl + eps.*(evl <= 0);
54
55 [e, edata, eprior] = neterr(w, net, x, t);
56
57 if size(net.alpha) == [1 1]
58 % Form vector of eigenvalues
59 evl = diag(evl);
60 safe_evl = diag(safe_evl);
61 else
62 ngroups = size(net.alpha, 1);
63 gams = zeros(1, ngroups);
64 logas = zeros(1, ngroups);
65 % Reconstruct data hessian with negative eigenvalues set to zero.
66 dh = evec*evl*evec';
67 end
68
69 % Do the re-estimation.
70 for k = 1 : num
71 % Re-estimate alpha.
72 if size(net.alpha) == [1 1]
73 % Evaluate number of well-determined parameters.
74 L = evl;
75 if isfield(net, 'beta')
76 L = net.beta*L;
77 end
78 gamma = sum(L./(L + net.alpha));
79 net.alpha = 0.5*gamma/eprior;
80 % Partially evaluate log evidence: only include unmasked weights
81 logev = 0.5*length(w)*log(net.alpha);
82 else
83 hinv = inv(hbayes(net, dh));
84 for m = 1 : ngroups
85 group_nweights = sum(net.index(:, m));
86 gams(m) = group_nweights - ...
87 net.alpha(m)*sum(diag(hinv).*net.index(:,m));
88 net.alpha(m) = real(gams(m)/(2*eprior(m)));
89 % Weight alphas by number of weights in group
90 logas(m) = 0.5*group_nweights*log(net.alpha(m));
91 end
92 gamma = sum(gams, 2);
93 logev = sum(logas);
94 end
95 % Re-estimate beta.
96 if isfield(net, 'beta')
97 net.beta = 0.5*(net.nout*ndata - gamma)/edata;
98 logev = logev + 0.5*ndata*log(net.beta) - 0.5*ndata*log(2*pi);
99 local_beta = net.beta;
100 end
101
102 % Evaluate new log evidence
103 e = errbayes(net, edata);
104 if size(net.alpha) == [1 1]
105 logev = logev - e - 0.5*sum(log(local_beta*safe_evl+net.alpha));
106 else
107 for m = 1:ngroups
108 logev = logev - e - ...
109 0.5*sum(log(local_beta*(safe_evl*net.index(:, m))+...
110 net.alpha(m)));
111 end
112 end
113 end
114