Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/demgpard.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 %DEMGPARD Demonstrate ARD using a Gaussian Process. | |
2 % | |
3 % Description | |
4 % The data consists of three input variables X1, X2 and X3, and one | |
5 % target variable T. The target data is generated by computing | |
6 % SIN(2*PI*X1) and adding Gaussian noise, x2 is a copy of x1 with a | |
7 % higher level of added noise, and x3 is sampled randomly from a | |
8 % Gaussian distribution. A Gaussian Process, is trained by optimising | |
9 % the hyperparameters using the scaled conjugate gradient algorithm. | |
10 % The final values of the hyperparameters show that the model | |
11 % successfully identifies the importance of each input. | |
12 % | |
13 % See also | |
14 % DEMGP, GP, GPERR, GPFWD, GPGRAD, GPINIT, SCG | |
15 % | |
16 | |
17 % Copyright (c) Ian T Nabney (1996-2001) | |
18 | |
19 clc; | |
20 randn('state', 1729); | |
21 rand('state', 1729); | |
22 disp('This demonstration illustrates the technique of automatic relevance') | |
23 disp('determination (ARD) using a Gaussian Process.') | |
24 disp(' '); | |
25 disp('First, we set up a synthetic data set involving three input variables:') | |
26 disp('x1 is sampled uniformly from the range (0,1) and has a low level of') | |
27 disp('added Gaussian noise, x2 is a copy of x1 with a higher level of added') | |
28 disp('noise, and x3 is sampled randomly from a Gaussian distribution. The') | |
29 disp('single target variable is given by t = sin(2*pi*x1) with additive') | |
30 disp('Gaussian noise. Thus x1 is very relevant for determining the target') | |
31 disp('value, x2 is of some relevance, while x3 should in principle be') | |
32 disp('irrelevant.') | |
33 disp(' '); | |
34 disp('Press any key to see a plot of t against x1.') | |
35 pause; | |
36 | |
37 ndata = 100; | |
38 x1 = rand(ndata, 1); | |
39 x2 = x1 + 0.05*randn(ndata, 1); | |
40 x3 = 0.5 + 0.5*randn(ndata, 1); | |
41 x = [x1, x2, x3]; | |
42 t = sin(2*pi*x1) + 0.1*randn(ndata, 1); | |
43 | |
44 % Plot the data and the original function. | |
45 h = figure; | |
46 plotvals = linspace(0, 1, 200)'; | |
47 plot(x1, t, 'ob') | |
48 hold on | |
49 xlabel('Input x1') | |
50 ylabel('Target') | |
51 axis([0 1 -1.5 1.5]) | |
52 [fx, fy] = fplot('sin(2*pi*x)', [0 1]); | |
53 plot(fx, fy, '-g', 'LineWidth', 2); | |
54 legend('data', 'function'); | |
55 | |
56 disp(' '); | |
57 disp('Press any key to continue') | |
58 pause; clc; | |
59 | |
60 disp('The Gaussian Process has a separate hyperparameter for each input.') | |
61 disp('The hyperparameters are trained by error minimisation using the scaled.') | |
62 disp('conjugate gradient optimiser.') | |
63 disp(' '); | |
64 disp('Press any key to create and train the model.') | |
65 disp(' '); | |
66 pause; | |
67 | |
68 net = gp(3, 'sqexp'); | |
69 % Initialise the parameters. | |
70 prior.pr_mean = 0; | |
71 prior.pr_var = 0.1; | |
72 net = gpinit(net, x, t, prior); | |
73 | |
74 % Now train to find the hyperparameters. | |
75 options = foptions; | |
76 options(1) = 1; | |
77 options(14) = 30; | |
78 | |
79 [net, options] = netopt(net, options, x, t, 'scg'); | |
80 | |
81 rel = exp(net.inweights); | |
82 | |
83 fprintf(1, ... | |
84 '\nFinal hyperparameters:\n\n bias:\t\t%10.6f\n noise:\t%10.6f\n', ... | |
85 exp(net.bias), exp(net.noise)); | |
86 fprintf(1, ' Vertical scale: %8.6f\n', exp(net.fpar(1))); | |
87 fprintf(1, ' Input 1:\t%10.6f\n Input 2:\t%10.6f\n', ... | |
88 rel(1), rel(2)); | |
89 fprintf(1, ' Input 3:\t%10.6f\n\n', rel(3)); | |
90 disp(' '); | |
91 disp('We see that the inverse lengthscale associated with') | |
92 disp('input x1 is large, that of x2 has an intermediate value and the variance') | |
93 disp('of weights associated with x3 is small.') | |
94 disp(' '); | |
95 disp('This implies that the Gaussian Process is giving greatest emphasis') | |
96 disp('to x1 and least emphasis to x3, with intermediate emphasis on') | |
97 disp('x2 in the covariance function.') | |
98 disp(' ') | |
99 disp('Since the target t is statistically independent of x3 we might') | |
100 disp('expect the weights associated with this input would go to') | |
101 disp('zero. However, for any finite data set there may be some chance') | |
102 disp('correlation between x3 and t, and so the corresponding hyperparameter remains') | |
103 disp('finite.') | |
104 disp('Press any key to continue.') | |
105 pause | |
106 | |
107 disp('Finally, we plot the output of the Gaussian Process along the line') | |
108 disp('x1 = x2 = x3, together with the true underlying function.') | |
109 xt = linspace(0, 1, 50); | |
110 xtest = [xt', xt', xt']; | |
111 | |
112 cn = gpcovar(net, x); | |
113 cninv = inv(cn); | |
114 [ytest, sigsq] = gpfwd(net, xtest, cninv); | |
115 sig = sqrt(sigsq); | |
116 | |
117 figure(h); hold on; | |
118 plot(xt, ytest, '-k'); | |
119 plot(xt, ytest+(2*sig), '-b', xt, ytest-(2*sig), '-b'); | |
120 axis([0 1 -1.5 1.5]); | |
121 fplot('sin(2*pi*x)', [0 1], '--m'); | |
122 | |
123 disp(' '); | |
124 disp('Press any key to end.') | |
125 pause; clc; close(h); clear all | |
126 |