Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/demgmm3.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 %DEMGMM3 Demonstrate density modelling with a Gaussian mixture model. | |
2 % | |
3 % Description | |
4 % The problem consists of modelling data generated by a mixture of | |
5 % three Gaussians in 2 dimensions with a mixture model using diagonal | |
6 % covariance matrices. The priors are 0.3, 0.5 and 0.2; the centres | |
7 % are (2, 3.5), (0, 0) and (0,2); the covariances are all axis aligned | |
8 % (0.16, 0.64), (0.25, 1) and the identity matrix. The first figure | |
9 % contains a scatter plot of the data. | |
10 % | |
11 % A Gaussian mixture model with three components is trained using EM. | |
12 % The parameter vector is printed before training and after training. | |
13 % The user should press any key to continue at these points. The | |
14 % parameter vector consists of priors (the column), and centres (given | |
15 % as (x, y) pairs as the next two columns). The diagonal entries of | |
16 % the covariance matrices are printed separately. | |
17 % | |
18 % The second figure is a 3 dimensional view of the density function, | |
19 % while the third shows the axes of the 1-standard deviation circles | |
20 % for the three components of the mixture model. | |
21 % | |
22 % See also | |
23 % GMM, GMMINIT, GMMEM, GMMPROB, GMMUNPAK | |
24 % | |
25 | |
26 % Copyright (c) Ian T Nabney (1996-2001) | |
27 | |
28 % Generate the data | |
29 ndata = 500; | |
30 | |
31 % Fix the seeds for reproducible results | |
32 randn('state', 42); | |
33 rand('state', 42); | |
34 data = randn(ndata, 2); | |
35 prior = [0.3 0.5 0.2]; | |
36 % Mixture model swaps clusters 1 and 3 | |
37 datap = [0.2 0.5 0.3]; | |
38 datac = [0 2; 0 0; 2 3.5]; | |
39 datacov = [1 1;1 0.25; 0.4*0.4 0.8*0.8]; | |
40 data1 = data(1:prior(1)*ndata,:); | |
41 data2 = data(prior(1)*ndata+1:(prior(2)+prior(1))*ndata, :); | |
42 data3 = data((prior(1)+prior(2))*ndata +1:ndata, :); | |
43 | |
44 % First cluster has axis aligned variance and centre (2, 3.5) | |
45 data1(:, 1) = data1(:, 1)*0.4 + 2.0; | |
46 data1(:, 2) = data1(:, 2)*0.8 + 3.5; | |
47 | |
48 % Second cluster has axis aligned variance and centre (0, 0) | |
49 data2(:,2) = data2(:, 2)*0.5; | |
50 | |
51 % Third cluster is at (0,2) with identity matrix for covariance | |
52 data3 = data3 + repmat([0 2], prior(3)*ndata, 1); | |
53 | |
54 % Put the dataset together again | |
55 data = [data1; data2; data3]; | |
56 | |
57 clc | |
58 disp('This demonstration illustrates the use of a Gaussian mixture model') | |
59 disp('with diagonal covariance matrices to approximate the unconditional') | |
60 disp('probability density of data in a two-dimensional space.') | |
61 disp('We begin by generating the data from a mixture of three Gaussians') | |
62 disp('with axis aligned covariance structure and plotting it.') | |
63 disp(' ') | |
64 disp('The first cluster has centre (0, 2).') | |
65 disp('The second cluster has centre (0, 0).') | |
66 disp('The third cluster has centre (2, 3.5).') | |
67 disp(' ') | |
68 disp('Press any key to continue') | |
69 pause | |
70 | |
71 fh1 = figure; | |
72 plot(data(:, 1), data(:, 2), 'o') | |
73 set(gca, 'Box', 'on') | |
74 | |
75 % Set up mixture model | |
76 ncentres = 3; | |
77 input_dim = 2; | |
78 mix = gmm(input_dim, ncentres, 'diag'); | |
79 | |
80 options = foptions; | |
81 options(14) = 5; % Just use 5 iterations of k-means in initialisation | |
82 % Initialise the model parameters from the data | |
83 mix = gmminit(mix, data, options); | |
84 | |
85 % Print out model | |
86 disp('The mixture model has three components and diagonal covariance') | |
87 disp('matrices. The model parameters after initialisation using the') | |
88 disp('k-means algorithm are as follows') | |
89 disp(' Priors Centres') | |
90 disp([mix.priors' mix.centres]) | |
91 disp('Covariance diagonals are') | |
92 disp(mix.covars) | |
93 disp('Press any key to continue.') | |
94 pause | |
95 | |
96 % Set up vector of options for EM trainer | |
97 options = zeros(1, 18); | |
98 options(1) = 1; % Prints out error values. | |
99 options(14) = 20; % Number of iterations. | |
100 | |
101 disp('We now train the model using the EM algorithm for 20 iterations.') | |
102 disp(' ') | |
103 disp('Press any key to continue.') | |
104 pause | |
105 | |
106 [mix, options, errlog] = gmmem(mix, data, options); | |
107 | |
108 % Print out model | |
109 disp(' ') | |
110 disp('The trained model has priors and centres:') | |
111 disp(' Priors Centres') | |
112 disp([mix.priors' mix.centres]) | |
113 disp('The data generator has priors and centres') | |
114 disp(' Priors Centres') | |
115 disp([datap' datac]) | |
116 disp('Model covariance diagonals are') | |
117 disp(mix.covars) | |
118 disp('Data generator covariance diagonals are') | |
119 disp(datacov) | |
120 disp('Note the close correspondence between these parameters and those') | |
121 disp('of the distribution used to generate the data.') | |
122 disp(' ') | |
123 disp('Press any key to continue.') | |
124 pause | |
125 | |
126 clc | |
127 disp('We now plot the density given by the mixture model as a surface plot.') | |
128 disp(' ') | |
129 disp('Press any key to continue.') | |
130 pause | |
131 | |
132 % Plot the result | |
133 x = -4.0:0.2:5.0; | |
134 y = -4.0:0.2:5.0; | |
135 [X, Y] = meshgrid(x,y); | |
136 X = X(:); | |
137 Y = Y(:); | |
138 grid = [X Y]; | |
139 Z = gmmprob(mix, grid); | |
140 Z = reshape(Z, length(x), length(y)); | |
141 c = mesh(x, y, Z); | |
142 hold on | |
143 title('Surface plot of probability density') | |
144 hold off | |
145 drawnow | |
146 | |
147 clc | |
148 disp('The final plot shows the centres and widths, given by one standard') | |
149 disp('deviation, of the three components of the mixture model. The axes') | |
150 disp('of the ellipses of constant density are shown.') | |
151 disp(' ') | |
152 disp('Press any key to continue.') | |
153 pause | |
154 | |
155 % Try to calculate a sensible position for the second figure, below the first | |
156 fig1_pos = get(fh1, 'Position'); | |
157 fig2_pos = fig1_pos; | |
158 fig2_pos(2) = fig2_pos(2) - fig1_pos(4); | |
159 fh2 = figure('Position', fig2_pos); | |
160 | |
161 h = plot(data(:, 1), data(:, 2), 'bo'); | |
162 hold on | |
163 axis('equal'); | |
164 title('Plot of data and covariances') | |
165 for i = 1:ncentres | |
166 v = [1 0]; | |
167 for j = 1:2 | |
168 start=mix.centres(i,:)-sqrt(mix.covars(i,:).*v); | |
169 endpt=mix.centres(i,:)+sqrt(mix.covars(i,:).*v); | |
170 linex = [start(1) endpt(1)]; | |
171 liney = [start(2) endpt(2)]; | |
172 line(linex, liney, 'Color', 'k', 'LineWidth', 3) | |
173 v = [0 1]; | |
174 end | |
175 % Plot ellipses of one standard deviation | |
176 theta = 0:0.02:2*pi; | |
177 x = sqrt(mix.covars(i,1))*cos(theta) + mix.centres(i,1); | |
178 y = sqrt(mix.covars(i,2))*sin(theta) + mix.centres(i,2); | |
179 plot(x, y, 'r-'); | |
180 end | |
181 hold off | |
182 | |
183 disp('Note how the data cluster positions and widths are captured by') | |
184 disp('the mixture model.') | |
185 disp(' ') | |
186 disp('Press any key to end.') | |
187 pause | |
188 | |
189 close(fh1); | |
190 close(fh2); | |
191 clear all; | |
192 |