comparison toolboxes/FullBNT-1.0.7/netlab3.3/dem2ddat.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [data, c, prior, sd] = dem2ddat(ndata)
2 %DEM2DDAT Generates two dimensional data for demos.
3 %
4 % Description
5 % The data is drawn from three spherical Gaussian distributions with
6 % priors 0.3, 0.5 and 0.2; centres (2, 3.5), (0, 0) and (0,2); and
7 % standard deviations 0.2, 0.5 and 1.0. DATA = DEM2DDAT(NDATA)
8 % generates NDATA points.
9 %
10 % [DATA, C] = DEM2DDAT(NDATA) also returns a matrix containing the
11 % centres of the Gaussian distributions.
12 %
13 % See also
14 % DEMGMM1, DEMKMEAN, DEMKNN1
15 %
16
17 % Copyright (c) Ian T Nabney (1996-2001)
18
19 input_dim = 2;
20
21 % Fix seed for reproducible results
22 randn('state', 42);
23
24 % Generate mixture of three Gaussians in two dimensional space
25 data = randn(ndata, input_dim);
26
27 % Priors for the three clusters
28 prior(1) = 0.3;
29 prior(2) = 0.5;
30 prior(3) = 0.2;
31
32 % Cluster centres
33 c = [2.0, 3.5; 0.0, 0.0; 0.0, 2.0];
34
35 % Cluster standard deviations
36 sd = [0.2 0.5 1.0];
37
38 % Put first cluster at (2, 3.5)
39 data(1:prior(1)*ndata, 1) = data(1:prior(1)*ndata, 1) * 0.2 + c(1,1);
40 data(1:prior(1)*ndata, 2) = data(1:prior(1)*ndata, 2) * 0.2 + c(1,2);
41
42 % Leave second cluster at (0,0)
43 data((prior(1)*ndata + 1):(prior(2)+prior(1))*ndata, :) = ...
44 data((prior(1)*ndata + 1):(prior(2)+prior(1))*ndata, :) * 0.5;
45
46 % Put third cluster at (0,2)
47 data((prior(1)+prior(2))*ndata +1:ndata, 2) = ...
48 data((prior(1)+prior(2))*ndata+1:ndata, 2) + c(3, 2);