Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/nethelp3.3/mlpbkp.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 <html> | |
2 <head> | |
3 <title> | |
4 Netlab Reference Manual mlpbkp | |
5 </title> | |
6 </head> | |
7 <body> | |
8 <H1> mlpbkp | |
9 </H1> | |
10 <h2> | |
11 Purpose | |
12 </h2> | |
13 Backpropagate gradient of error function for 2-layer network. | |
14 | |
15 <p><h2> | |
16 Synopsis | |
17 </h2> | |
18 <PRE> | |
19 g = mlpbkp(net, x, z, deltas)</PRE> | |
20 | |
21 | |
22 <p><h2> | |
23 Description | |
24 </h2> | |
25 <CODE>g = mlpbkp(net, x, z, deltas)</CODE> takes a network data structure | |
26 <CODE>net</CODE> together with a matrix <CODE>x</CODE> of input vectors, a matrix | |
27 <CODE>z</CODE> of hidden unit activations, and a matrix <CODE>deltas</CODE> of the | |
28 gradient of the error function with respect to the values of the | |
29 output units (i.e. the summed inputs to the output units, before the | |
30 activation function is applied). The return value is the gradient | |
31 <CODE>g</CODE> of the error function with respect to the network | |
32 weights. Each row of <CODE>x</CODE> corresponds to one input vector. | |
33 | |
34 <p>This function is provided so that the common backpropagation algorithm | |
35 can be used by multi-layer perceptron network models to compute | |
36 gradients for mixture density networks as well as standard error | |
37 functions. | |
38 | |
39 <p><h2> | |
40 See Also | |
41 </h2> | |
42 <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="mlpgrad.htm">mlpgrad</a></CODE>, <CODE><a href="mlpderiv.htm">mlpderiv</a></CODE>, <CODE><a href="mdngrad.htm">mdngrad</a></CODE><hr> | |
43 <b>Pages:</b> | |
44 <a href="index.htm">Index</a> | |
45 <hr> | |
46 <p>Copyright (c) Ian T Nabney (1996-9) | |
47 | |
48 | |
49 </body> | |
50 </html> |