Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/nethelp3.3/index.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 <html> | |
2 <head> | |
3 <title> | |
4 NETLAB Reference Documentation | |
5 </title> | |
6 </head> | |
7 <body> | |
8 <H1> NETLAB Online Reference Documentation </H1> | |
9 Welcome to the NETLAB online reference documentation. | |
10 The NETLAB simulation software is designed to provide all the tools necessary | |
11 for principled and theoretically well founded application development. The | |
12 NETLAB library is based on the approach and techniques described in <I>Neural | |
13 Networks for Pattern Recognition </I>(Bishop, 1995). The library includes software | |
14 implementations of a wide range of data analysis techniques, many of which are | |
15 not widely available, and are rarely, if ever, included in standard neural | |
16 network simulation packages. | |
17 <p>The online reference documentation provides direct hypertext links to specific Netlab function descriptions. | |
18 <p>If you have any comments or problems to report, please contact Ian Nabney (<a href="mailto:i.t.nabney@aston.ac.uk"><tt>i.t.nabney@aston.ac.uk</tt></a>) or Christopher Bishop (<a href="mailto:c.m.bishop@aston.ac.uk"><tt>c.m.bishop@aston.ac.uk</tt></a>).<H1> Index | |
19 </H1> | |
20 An alphabetic list of functions in Netlab.<p> | |
21 <DL> | |
22 <DT> | |
23 <CODE><a href="conffig.htm">conffig</a></CODE><DD> | |
24 Display a confusion matrix. | |
25 <DT> | |
26 <CODE><a href="confmat.htm">confmat</a></CODE><DD> | |
27 Compute a confusion matrix. | |
28 <DT> | |
29 <CODE><a href="conjgrad.htm">conjgrad</a></CODE><DD> | |
30 Conjugate gradients optimization. | |
31 <DT> | |
32 <CODE><a href="consist.htm">consist</a></CODE><DD> | |
33 Check that arguments are consistent. | |
34 <DT> | |
35 <CODE><a href="convertoldnet.htm">convertoldnet</a></CODE><DD> | |
36 Convert pre-2.3 release MLP and MDN nets to new format | |
37 <DT> | |
38 <CODE><a href="datread.htm">datread</a></CODE><DD> | |
39 Read data from an ascii file. | |
40 <DT> | |
41 <CODE><a href="datwrite.htm">datwrite</a></CODE><DD> | |
42 Write data to ascii file. | |
43 <DT> | |
44 <CODE><a href="dem2ddat.htm">dem2ddat</a></CODE><DD> | |
45 Generates two dimensional data for demos. | |
46 <DT> | |
47 <CODE><a href="demard.htm">demard</a></CODE><DD> | |
48 Automatic relevance determination using the MLP. | |
49 <DT> | |
50 <CODE><a href="demev1.htm">demev1</a></CODE><DD> | |
51 Demonstrate Bayesian regression for the MLP. | |
52 <DT> | |
53 <CODE><a href="demev2.htm">demev2</a></CODE><DD> | |
54 Demonstrate Bayesian classification for the MLP. | |
55 <DT> | |
56 <CODE><a href="demev3.htm">demev3</a></CODE><DD> | |
57 Demonstrate Bayesian regression for the RBF. | |
58 <DT> | |
59 <CODE><a href="demgauss.htm">demgauss</a></CODE><DD> | |
60 Demonstrate sampling from Gaussian distributions. | |
61 <DT> | |
62 <CODE><a href="demglm1.htm">demglm1</a></CODE><DD> | |
63 Demonstrate simple classification using a generalized linear model. | |
64 <DT> | |
65 <CODE><a href="demglm2.htm">demglm2</a></CODE><DD> | |
66 Demonstrate simple classification using a generalized linear model. | |
67 <DT> | |
68 <CODE><a href="demgmm1.htm">demgmm1</a></CODE><DD> | |
69 Demonstrate density modelling with a Gaussian mixture model. | |
70 <DT> | |
71 <CODE><a href="demgmm3.htm">demgmm3</a></CODE><DD> | |
72 Demonstrate density modelling with a Gaussian mixture model. | |
73 <DT> | |
74 <CODE><a href="demgmm4.htm">demgmm4</a></CODE><DD> | |
75 Demonstrate density modelling with a Gaussian mixture model. | |
76 <DT> | |
77 <CODE><a href="demgmm5.htm">demgmm5</a></CODE><DD> | |
78 Demonstrate density modelling with a PPCA mixture model. | |
79 <DT> | |
80 <CODE><a href="demgp.htm">demgp</a></CODE><DD> | |
81 Demonstrate simple regression using a Gaussian Process. | |
82 <DT> | |
83 <CODE><a href="demgpard.htm">demgpard</a></CODE><DD> | |
84 Demonstrate ARD using a Gaussian Process. | |
85 <DT> | |
86 <CODE><a href="demgpot.htm">demgpot</a></CODE><DD> | |
87 Computes the gradient of the negative log likelihood for a mixture model. | |
88 <DT> | |
89 <CODE><a href="demgtm1.htm">demgtm1</a></CODE><DD> | |
90 Demonstrate EM for GTM. | |
91 <DT> | |
92 <CODE><a href="demgtm2.htm">demgtm2</a></CODE><DD> | |
93 Demonstrate GTM for visualisation. | |
94 <DT> | |
95 <CODE><a href="demhint.htm">demhint</a></CODE><DD> | |
96 Demonstration of Hinton diagram for 2-layer feed-forward network. | |
97 <DT> | |
98 <CODE><a href="demhmc1.htm">demhmc1</a></CODE><DD> | |
99 Demonstrate Hybrid Monte Carlo sampling on mixture of two Gaussians. | |
100 <DT> | |
101 <CODE><a href="demhmc2.htm">demhmc2</a></CODE><DD> | |
102 Demonstrate Bayesian regression with Hybrid Monte Carlo sampling. | |
103 <DT> | |
104 <CODE><a href="demhmc3.htm">demhmc3</a></CODE><DD> | |
105 Demonstrate Bayesian regression with Hybrid Monte Carlo sampling. | |
106 <DT> | |
107 <CODE><a href="demkmean.htm">demkmean</a></CODE><DD> | |
108 Demonstrate simple clustering model trained with K-means. | |
109 <DT> | |
110 <CODE><a href="demknn1.htm">demknn1</a></CODE><DD> | |
111 Demonstrate nearest neighbour classifier. | |
112 <DT> | |
113 <CODE><a href="demmdn1.htm">demmdn1</a></CODE><DD> | |
114 Demonstrate fitting a multi-valued function using a Mixture Density Network. | |
115 <DT> | |
116 <CODE><a href="demmet1.htm">demmet1</a></CODE><DD> | |
117 Demonstrate Markov Chain Monte Carlo sampling on a Gaussian. | |
118 <DT> | |
119 <CODE><a href="demmlp1.htm">demmlp1</a></CODE><DD> | |
120 Demonstrate simple regression using a multi-layer perceptron | |
121 <DT> | |
122 <CODE><a href="demmlp2.htm">demmlp2</a></CODE><DD> | |
123 Demonstrate simple classification using a multi-layer perceptron | |
124 <DT> | |
125 <CODE><a href="demnlab.htm">demnlab</a></CODE><DD> | |
126 A front-end Graphical User Interface to the demos | |
127 <DT> | |
128 <CODE><a href="demns1.htm">demns1</a></CODE><DD> | |
129 Demonstrate Neuroscale for visualisation. | |
130 <DT> | |
131 <CODE><a href="demolgd1.htm">demolgd1</a></CODE><DD> | |
132 Demonstrate simple MLP optimisation with on-line gradient descent | |
133 <DT> | |
134 <CODE><a href="demopt1.htm">demopt1</a></CODE><DD> | |
135 Demonstrate different optimisers on Rosenbrock's function. | |
136 <DT> | |
137 <CODE><a href="dempot.htm">dempot</a></CODE><DD> | |
138 Computes the negative log likelihood for a mixture model. | |
139 <DT> | |
140 <CODE><a href="demprgp.htm">demprgp</a></CODE><DD> | |
141 Demonstrate sampling from a Gaussian Process prior. | |
142 <DT> | |
143 <CODE><a href="demprior.htm">demprior</a></CODE><DD> | |
144 Demonstrate sampling from a multi-parameter Gaussian prior. | |
145 <DT> | |
146 <CODE><a href="demrbf1.htm">demrbf1</a></CODE><DD> | |
147 Demonstrate simple regression using a radial basis function network. | |
148 <DT> | |
149 <CODE><a href="demsom1.htm">demsom1</a></CODE><DD> | |
150 Demonstrate SOM for visualisation. | |
151 <DT> | |
152 <CODE><a href="demtrain.htm">demtrain</a></CODE><DD> | |
153 Demonstrate training of MLP network. | |
154 <DT> | |
155 <CODE><a href="dist2.htm">dist2</a></CODE><DD> | |
156 Calculates squared distance between two sets of points. | |
157 <DT> | |
158 <CODE><a href="eigdec.htm">eigdec</a></CODE><DD> | |
159 Sorted eigendecomposition | |
160 <DT> | |
161 <CODE><a href="errbayes.htm">errbayes</a></CODE><DD> | |
162 Evaluate Bayesian error function for network. | |
163 <DT> | |
164 <CODE><a href="evidence.htm">evidence</a></CODE><DD> | |
165 Re-estimate hyperparameters using evidence approximation. | |
166 <DT> | |
167 <CODE><a href="fevbayes.htm">fevbayes</a></CODE><DD> | |
168 Evaluate Bayesian regularisation for network forward propagation. | |
169 <DT> | |
170 <CODE><a href="gauss.htm">gauss</a></CODE><DD> | |
171 Evaluate a Gaussian distribution. | |
172 <DT> | |
173 <CODE><a href="gbayes.htm">gbayes</a></CODE><DD> | |
174 Evaluate gradient of Bayesian error function for network. | |
175 <DT> | |
176 <CODE><a href="glm.htm">glm</a></CODE><DD> | |
177 Create a generalized linear model. | |
178 <DT> | |
179 <CODE><a href="glmderiv.htm">glmderiv</a></CODE><DD> | |
180 Evaluate derivatives of GLM outputs with respect to weights. | |
181 <DT> | |
182 <CODE><a href="glmerr.htm">glmerr</a></CODE><DD> | |
183 Evaluate error function for generalized linear model. | |
184 <DT> | |
185 <CODE><a href="glmevfwd.htm">glmevfwd</a></CODE><DD> | |
186 Forward propagation with evidence for GLM | |
187 <DT> | |
188 <CODE><a href="glmfwd.htm">glmfwd</a></CODE><DD> | |
189 Forward propagation through generalized linear model. | |
190 <DT> | |
191 <CODE><a href="glmgrad.htm">glmgrad</a></CODE><DD> | |
192 Evaluate gradient of error function for generalized linear model. | |
193 <DT> | |
194 <CODE><a href="glmhess.htm">glmhess</a></CODE><DD> | |
195 Evaluate the Hessian matrix for a generalised linear model. | |
196 <DT> | |
197 <CODE><a href="glminit.htm">glminit</a></CODE><DD> | |
198 Initialise the weights in a generalized linear model. | |
199 <DT> | |
200 <CODE><a href="glmpak.htm">glmpak</a></CODE><DD> | |
201 Combines weights and biases into one weights vector. | |
202 <DT> | |
203 <CODE><a href="glmtrain.htm">glmtrain</a></CODE><DD> | |
204 Specialised training of generalized linear model | |
205 <DT> | |
206 <CODE><a href="glmunpak.htm">glmunpak</a></CODE><DD> | |
207 Separates weights vector into weight and bias matrices. | |
208 <DT> | |
209 <CODE><a href="gmm.htm">gmm</a></CODE><DD> | |
210 Creates a Gaussian mixture model with specified architecture. | |
211 <DT> | |
212 <CODE><a href="gmmactiv.htm">gmmactiv</a></CODE><DD> | |
213 Computes the activations of a Gaussian mixture model. | |
214 <DT> | |
215 <CODE><a href="gmmem.htm">gmmem</a></CODE><DD> | |
216 EM algorithm for Gaussian mixture model. | |
217 <DT> | |
218 <CODE><a href="gmminit.htm">gmminit</a></CODE><DD> | |
219 Initialises Gaussian mixture model from data | |
220 <DT> | |
221 <CODE><a href="gmmpak.htm">gmmpak</a></CODE><DD> | |
222 Combines all the parameters in a Gaussian mixture model into one vector. | |
223 <DT> | |
224 <CODE><a href="gmmpost.htm">gmmpost</a></CODE><DD> | |
225 Computes the class posterior probabilities of a Gaussian mixture model. | |
226 <DT> | |
227 <CODE><a href="gmmprob.htm">gmmprob</a></CODE><DD> | |
228 Computes the data probability for a Gaussian mixture model. | |
229 <DT> | |
230 <CODE><a href="gmmsamp.htm">gmmsamp</a></CODE><DD> | |
231 Sample from a Gaussian mixture distribution. | |
232 <DT> | |
233 <CODE><a href="gmmunpak.htm">gmmunpak</a></CODE><DD> | |
234 Separates a vector of Gaussian mixture model parameters into its components. | |
235 <DT> | |
236 <CODE><a href="gp.htm">gp</a></CODE><DD> | |
237 Create a Gaussian Process. | |
238 <DT> | |
239 <CODE><a href="gpcovar.htm">gpcovar</a></CODE><DD> | |
240 Calculate the covariance for a Gaussian Process. | |
241 <DT> | |
242 <CODE><a href="gpcovarf.htm">gpcovarf</a></CODE><DD> | |
243 Calculate the covariance function for a Gaussian Process. | |
244 <DT> | |
245 <CODE><a href="gpcovarp.htm">gpcovarp</a></CODE><DD> | |
246 Calculate the prior covariance for a Gaussian Process. | |
247 <DT> | |
248 <CODE><a href="gperr.htm">gperr</a></CODE><DD> | |
249 Evaluate error function for Gaussian Process. | |
250 <DT> | |
251 <CODE><a href="gpfwd.htm">gpfwd</a></CODE><DD> | |
252 Forward propagation through Gaussian Process. | |
253 <DT> | |
254 <CODE><a href="gpgrad.htm">gpgrad</a></CODE><DD> | |
255 Evaluate error gradient for Gaussian Process. | |
256 <DT> | |
257 <CODE><a href="gpinit.htm">gpinit</a></CODE><DD> | |
258 Initialise Gaussian Process model. | |
259 <DT> | |
260 <CODE><a href="gppak.htm">gppak</a></CODE><DD> | |
261 Combines GP hyperparameters into one vector. | |
262 <DT> | |
263 <CODE><a href="gpunpak.htm">gpunpak</a></CODE><DD> | |
264 Separates hyperparameter vector into components. | |
265 <DT> | |
266 <CODE><a href="gradchek.htm">gradchek</a></CODE><DD> | |
267 Checks a user-defined gradient function using finite differences. | |
268 <DT> | |
269 <CODE><a href="graddesc.htm">graddesc</a></CODE><DD> | |
270 Gradient descent optimization. | |
271 <DT> | |
272 <CODE><a href="gsamp.htm">gsamp</a></CODE><DD> | |
273 Sample from a Gaussian distribution. | |
274 <DT> | |
275 <CODE><a href="gtm.htm">gtm</a></CODE><DD> | |
276 Create a Generative Topographic Map. | |
277 <DT> | |
278 <CODE><a href="gtmem.htm">gtmem</a></CODE><DD> | |
279 EM algorithm for Generative Topographic Mapping. | |
280 <DT> | |
281 <CODE><a href="gtmfwd.htm">gtmfwd</a></CODE><DD> | |
282 Forward propagation through GTM. | |
283 <DT> | |
284 <CODE><a href="gtminit.htm">gtminit</a></CODE><DD> | |
285 Initialise the weights and latent sample in a GTM. | |
286 <DT> | |
287 <CODE><a href="gtmlmean.htm">gtmlmean</a></CODE><DD> | |
288 Mean responsibility for data in a GTM. | |
289 <DT> | |
290 <CODE><a href="gtmlmode.htm">gtmlmode</a></CODE><DD> | |
291 Mode responsibility for data in a GTM. | |
292 <DT> | |
293 <CODE><a href="gtmmag.htm">gtmmag</a></CODE><DD> | |
294 Magnification factors for a GTM | |
295 <DT> | |
296 <CODE><a href="gtmpost.htm">gtmpost</a></CODE><DD> | |
297 Latent space responsibility for data in a GTM. | |
298 <DT> | |
299 <CODE><a href="gtmprob.htm">gtmprob</a></CODE><DD> | |
300 Probability for data under a GTM. | |
301 <DT> | |
302 <CODE><a href="hbayes.htm">hbayes</a></CODE><DD> | |
303 Evaluate Hessian of Bayesian error function for network. | |
304 <DT> | |
305 <CODE><a href="hesschek.htm">hesschek</a></CODE><DD> | |
306 Use central differences to confirm correct evaluation of Hessian matrix. | |
307 <DT> | |
308 <CODE><a href="hintmat.htm">hintmat</a></CODE><DD> | |
309 Evaluates the coordinates of the patches for a Hinton diagram. | |
310 <DT> | |
311 <CODE><a href="hinton.htm">hinton</a></CODE><DD> | |
312 Plot Hinton diagram for a weight matrix. | |
313 <DT> | |
314 <CODE><a href="histp.htm">histp</a></CODE><DD> | |
315 Histogram estimate of 1-dimensional probability distribution. | |
316 <DT> | |
317 <CODE><a href="hmc.htm">hmc</a></CODE><DD> | |
318 Hybrid Monte Carlo sampling. | |
319 <DT> | |
320 <CODE><a href="kmeans.htm">kmeans</a></CODE><DD> | |
321 Trains a k means cluster model. | |
322 <DT> | |
323 <CODE><a href="knn.htm">knn</a></CODE><DD> | |
324 Creates a K-nearest-neighbour classifier. | |
325 <DT> | |
326 <CODE><a href="knnfwd.htm">knnfwd</a></CODE><DD> | |
327 Forward propagation through a K-nearest-neighbour classifier. | |
328 <DT> | |
329 <CODE><a href="linef.htm">linef</a></CODE><DD> | |
330 Calculate function value along a line. | |
331 <DT> | |
332 <CODE><a href="linemin.htm">linemin</a></CODE><DD> | |
333 One dimensional minimization. | |
334 <DT> | |
335 <CODE><a href="maxitmess.htm">maxitmess</a></CODE><DD> | |
336 Create a standard error message when training reaches max. iterations. | |
337 <DT> | |
338 <CODE><a href="mdn.htm">mdn</a></CODE><DD> | |
339 Creates a Mixture Density Network with specified architecture. | |
340 <DT> | |
341 <CODE><a href="mdn2gmm.htm">mdn2gmm</a></CODE><DD> | |
342 Converts an MDN mixture data structure to array of GMMs. | |
343 <DT> | |
344 <CODE><a href="mdndist2.htm">mdndist2</a></CODE><DD> | |
345 Calculates squared distance between centres of Gaussian kernels and data | |
346 <DT> | |
347 <CODE><a href="mdnerr.htm">mdnerr</a></CODE><DD> | |
348 Evaluate error function for Mixture Density Network. | |
349 <DT> | |
350 <CODE><a href="mdnfwd.htm">mdnfwd</a></CODE><DD> | |
351 Forward propagation through Mixture Density Network. | |
352 <DT> | |
353 <CODE><a href="mdngrad.htm">mdngrad</a></CODE><DD> | |
354 Evaluate gradient of error function for Mixture Density Network. | |
355 <DT> | |
356 <CODE><a href="mdninit.htm">mdninit</a></CODE><DD> | |
357 Initialise the weights in a Mixture Density Network. | |
358 <DT> | |
359 <CODE><a href="mdnpak.htm">mdnpak</a></CODE><DD> | |
360 Combines weights and biases into one weights vector. | |
361 <DT> | |
362 <CODE><a href="mdnpost.htm">mdnpost</a></CODE><DD> | |
363 Computes the posterior probability for each MDN mixture component. | |
364 <DT> | |
365 <CODE><a href="mdnprob.htm">mdnprob</a></CODE><DD> | |
366 Computes the data probability likelihood for an MDN mixture structure. | |
367 <DT> | |
368 <CODE><a href="mdnunpak.htm">mdnunpak</a></CODE><DD> | |
369 Separates weights vector into weight and bias matrices. | |
370 <DT> | |
371 <CODE><a href="metrop.htm">metrop</a></CODE><DD> | |
372 Markov Chain Monte Carlo sampling with Metropolis algorithm. | |
373 <DT> | |
374 <CODE><a href="minbrack.htm">minbrack</a></CODE><DD> | |
375 Bracket a minimum of a function of one variable. | |
376 <DT> | |
377 <CODE><a href="mlp.htm">mlp</a></CODE><DD> | |
378 Create a 2-layer feedforward network. | |
379 <DT> | |
380 <CODE><a href="mlpbkp.htm">mlpbkp</a></CODE><DD> | |
381 Backpropagate gradient of error function for 2-layer network. | |
382 <DT> | |
383 <CODE><a href="mlpderiv.htm">mlpderiv</a></CODE><DD> | |
384 Evaluate derivatives of network outputs with respect to weights. | |
385 <DT> | |
386 <CODE><a href="mlperr.htm">mlperr</a></CODE><DD> | |
387 Evaluate error function for 2-layer network. | |
388 <DT> | |
389 <CODE><a href="mlpevfwd.htm">mlpevfwd</a></CODE><DD> | |
390 Forward propagation with evidence for MLP | |
391 <DT> | |
392 <CODE><a href="mlpfwd.htm">mlpfwd</a></CODE><DD> | |
393 Forward propagation through 2-layer network. | |
394 <DT> | |
395 <CODE><a href="mlpgrad.htm">mlpgrad</a></CODE><DD> | |
396 Evaluate gradient of error function for 2-layer network. | |
397 <DT> | |
398 <CODE><a href="mlphdotv.htm">mlphdotv</a></CODE><DD> | |
399 Evaluate the product of the data Hessian with a vector. | |
400 <DT> | |
401 <CODE><a href="mlphess.htm">mlphess</a></CODE><DD> | |
402 Evaluate the Hessian matrix for a multi-layer perceptron network. | |
403 <DT> | |
404 <CODE><a href="mlphint.htm">mlphint</a></CODE><DD> | |
405 Plot Hinton diagram for 2-layer feed-forward network. | |
406 <DT> | |
407 <CODE><a href="mlpinit.htm">mlpinit</a></CODE><DD> | |
408 Initialise the weights in a 2-layer feedforward network. | |
409 <DT> | |
410 <CODE><a href="mlppak.htm">mlppak</a></CODE><DD> | |
411 Combines weights and biases into one weights vector. | |
412 <DT> | |
413 <CODE><a href="mlpprior.htm">mlpprior</a></CODE><DD> | |
414 Create Gaussian prior for mlp. | |
415 <DT> | |
416 <CODE><a href="mlptrain.htm">mlptrain</a></CODE><DD> | |
417 Utility to train an MLP network for demtrain | |
418 <DT> | |
419 <CODE><a href="mlpunpak.htm">mlpunpak</a></CODE><DD> | |
420 Separates weights vector into weight and bias matrices. | |
421 <DT> | |
422 <CODE><a href="netderiv.htm">netderiv</a></CODE><DD> | |
423 Evaluate derivatives of network outputs by weights generically. | |
424 <DT> | |
425 <CODE><a href="neterr.htm">neterr</a></CODE><DD> | |
426 Evaluate network error function for generic optimizers | |
427 <DT> | |
428 <CODE><a href="netevfwd.htm">netevfwd</a></CODE><DD> | |
429 Generic forward propagation with evidence for network | |
430 <DT> | |
431 <CODE><a href="netgrad.htm">netgrad</a></CODE><DD> | |
432 Evaluate network error gradient for generic optimizers | |
433 <DT> | |
434 <CODE><a href="nethess.htm">nethess</a></CODE><DD> | |
435 Evaluate network Hessian | |
436 <DT> | |
437 <CODE><a href="netinit.htm">netinit</a></CODE><DD> | |
438 Initialise the weights in a network. | |
439 <DT> | |
440 <CODE><a href="netopt.htm">netopt</a></CODE><DD> | |
441 Optimize the weights in a network model. | |
442 <DT> | |
443 <CODE><a href="netpak.htm">netpak</a></CODE><DD> | |
444 Combines weights and biases into one weights vector. | |
445 <DT> | |
446 <CODE><a href="netunpak.htm">netunpak</a></CODE><DD> | |
447 Separates weights vector into weight and bias matrices. | |
448 <DT> | |
449 <CODE><a href="olgd.htm">olgd</a></CODE><DD> | |
450 On-line gradient descent optimization. | |
451 <DT> | |
452 <CODE><a href="pca.htm">pca</a></CODE><DD> | |
453 Principal Components Analysis | |
454 <DT> | |
455 <CODE><a href="plotmat.htm">plotmat</a></CODE><DD> | |
456 Display a matrix. | |
457 <DT> | |
458 <CODE><a href="ppca.htm">ppca</a></CODE><DD> | |
459 Probabilistic Principal Components Analysis | |
460 <DT> | |
461 <CODE><a href="quasinew.htm">quasinew</a></CODE><DD> | |
462 Quasi-Newton optimization. | |
463 <DT> | |
464 <CODE><a href="rbf.htm">rbf</a></CODE><DD> | |
465 Creates an RBF network with specified architecture | |
466 <DT> | |
467 <CODE><a href="rbfbkp.htm">rbfbkp</a></CODE><DD> | |
468 Backpropagate gradient of error function for RBF network. | |
469 <DT> | |
470 <CODE><a href="rbfderiv.htm">rbfderiv</a></CODE><DD> | |
471 Evaluate derivatives of RBF network outputs with respect to weights. | |
472 <DT> | |
473 <CODE><a href="rbferr.htm">rbferr</a></CODE><DD> | |
474 Evaluate error function for RBF network. | |
475 <DT> | |
476 <CODE><a href="rbfevfwd.htm">rbfevfwd</a></CODE><DD> | |
477 Forward propagation with evidence for RBF | |
478 <DT> | |
479 <CODE><a href="rbffwd.htm">rbffwd</a></CODE><DD> | |
480 Forward propagation through RBF network with linear outputs. | |
481 <DT> | |
482 <CODE><a href="rbfgrad.htm">rbfgrad</a></CODE><DD> | |
483 Evaluate gradient of error function for RBF network. | |
484 <DT> | |
485 <CODE><a href="rbfhess.htm">rbfhess</a></CODE><DD> | |
486 Evaluate the Hessian matrix for RBF network. | |
487 <DT> | |
488 <CODE><a href="rbfjacob.htm">rbfjacob</a></CODE><DD> | |
489 Evaluate derivatives of RBF network outputs with respect to inputs. | |
490 <DT> | |
491 <CODE><a href="rbfpak.htm">rbfpak</a></CODE><DD> | |
492 Combines all the parameters in an RBF network into one weights vector. | |
493 <DT> | |
494 <CODE><a href="rbfprior.htm">rbfprior</a></CODE><DD> | |
495 Create Gaussian prior and output layer mask for RBF. | |
496 <DT> | |
497 <CODE><a href="rbfsetbf.htm">rbfsetbf</a></CODE><DD> | |
498 Set basis functions of RBF from data. | |
499 <DT> | |
500 <CODE><a href="rbfsetfw.htm">rbfsetfw</a></CODE><DD> | |
501 Set basis function widths of RBF. | |
502 <DT> | |
503 <CODE><a href="rbftrain.htm">rbftrain</a></CODE><DD> | |
504 Two stage training of RBF network. | |
505 <DT> | |
506 <CODE><a href="rbfunpak.htm">rbfunpak</a></CODE><DD> | |
507 Separates a vector of RBF weights into its components. | |
508 <DT> | |
509 <CODE><a href="rosegrad.htm">rosegrad</a></CODE><DD> | |
510 Calculate gradient of Rosenbrock's function. | |
511 <DT> | |
512 <CODE><a href="rosen.htm">rosen</a></CODE><DD> | |
513 Calculate Rosenbrock's function. | |
514 <DT> | |
515 <CODE><a href="scg.htm">scg</a></CODE><DD> | |
516 Scaled conjugate gradient optimization. | |
517 <DT> | |
518 <CODE><a href="som.htm">som</a></CODE><DD> | |
519 Creates a Self-Organising Map. | |
520 <DT> | |
521 <CODE><a href="somfwd.htm">somfwd</a></CODE><DD> | |
522 Forward propagation through a Self-Organising Map. | |
523 <DT> | |
524 <CODE><a href="sompak.htm">sompak</a></CODE><DD> | |
525 Combines node weights into one weights matrix. | |
526 <DT> | |
527 <CODE><a href="somtrain.htm">somtrain</a></CODE><DD> | |
528 Kohonen training algorithm for SOM. | |
529 <DT> | |
530 <CODE><a href="somunpak.htm">somunpak</a></CODE><DD> | |
531 Replaces node weights in SOM. | |
532 </DL> | |
533 | |
534 <hr> | |
535 <p>Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997) | |
536 </body> | |
537 </html> |