comparison toolboxes/FullBNT-1.0.7/nethelp3.3/gp.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 <html>
2 <head>
3 <title>
4 Netlab Reference Manual gp
5 </title>
6 </head>
7 <body>
8 <H1> gp
9 </H1>
10 <h2>
11 Purpose
12 </h2>
13 Create a Gaussian Process.
14
15 <p><h2>
16 Synopsis
17 </h2>
18 <PRE>
19 net = gp(nin, covarfn)
20 net = gp(nin, covarfn, prior)
21 </PRE>
22
23
24 <p><h2>
25 Description
26 </h2>
27
28 <p><CODE>net = gp(nin, covarfn)</CODE> takes the number of inputs <CODE>nin</CODE>
29 for a Gaussian Process model with a single output, together
30 with a string <CODE>covarfn</CODE> which specifies the type of the covariance function,
31 and returns a data structure <CODE>net</CODE>. The parameters are set to zero.
32
33 <p>The fields in <CODE>net</CODE> are
34 <PRE>
35 type = 'gp'
36 nin = number of inputs
37 nout = number of outputs: always 1
38 nwts = total number of weights and covariance function parameters
39 bias = logarithm of constant offset in covariance function
40 noise = logarithm of output noise variance
41 inweights = logarithm of inverse length scale for each input
42 covarfn = string describing the covariance function:
43 'sqexp'
44 'ratquad'
45 fpar = covariance function specific parameters (1 for squared exponential,
46 2 for rational quadratic)
47 trin = training input data (initially empty)
48 trtargets = training target data (initially empty)
49 </PRE>
50
51
52 <p><CODE>net = gp(nin, covarfn, prior)</CODE> sets a Gaussian prior on the
53 parameters of the model. <CODE>prior</CODE> must contain the fields
54 <CODE>pr_mean</CODE> and <CODE>pr_variance</CODE>. If <CODE>pr_mean</CODE> is a scalar,
55 then the Gaussian is assumed to be isotropic and the additional fields
56 <CODE>net.pr_mean</CODE> and <CODE>pr_variance</CODE> are set. Otherwise,
57 the Gaussian prior has a mean
58 defined by a column vector of parameters <CODE>prior.pr_mean</CODE> and
59 covariance defined by a column vector of parameters <CODE>prior.pr_variance</CODE>.
60 Each element of <CODE>prmean</CODE> corresponds to a separate group of parameters, which
61 need not be mutually exclusive. The membership of the groups is defined
62 by the matrix <CODE>prior.index</CODE> in which the columns correspond to the elements of
63 <CODE>prmean</CODE>. Each column has one element for each weight in the matrix,
64 in the order defined by the function <CODE>gppak</CODE>, and each element
65 is 1 or 0 according to whether the parameter is a member of the
66 corresponding group or not. The additional field <CODE>net.index</CODE> is set
67 in this case.
68
69 <p><h2>
70 See Also
71 </h2>
72 <CODE><a href="gppak.htm">gppak</a></CODE>, <CODE><a href="gpunpak.htm">gpunpak</a></CODE>, <CODE><a href="gpfwd.htm">gpfwd</a></CODE>, <CODE><a href="gperr.htm">gperr</a></CODE>, <CODE><a href="gpcovar.htm">gpcovar</a></CODE>, <CODE><a href="gpgrad.htm">gpgrad</a></CODE><hr>
73 <b>Pages:</b>
74 <a href="index.htm">Index</a>
75 <hr>
76 <p>Copyright (c) Ian T Nabney (1996-9)
77
78
79 </body>
80 </html>