Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/nethelp3.3/gp.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 <html> | |
2 <head> | |
3 <title> | |
4 Netlab Reference Manual gp | |
5 </title> | |
6 </head> | |
7 <body> | |
8 <H1> gp | |
9 </H1> | |
10 <h2> | |
11 Purpose | |
12 </h2> | |
13 Create a Gaussian Process. | |
14 | |
15 <p><h2> | |
16 Synopsis | |
17 </h2> | |
18 <PRE> | |
19 net = gp(nin, covarfn) | |
20 net = gp(nin, covarfn, prior) | |
21 </PRE> | |
22 | |
23 | |
24 <p><h2> | |
25 Description | |
26 </h2> | |
27 | |
28 <p><CODE>net = gp(nin, covarfn)</CODE> takes the number of inputs <CODE>nin</CODE> | |
29 for a Gaussian Process model with a single output, together | |
30 with a string <CODE>covarfn</CODE> which specifies the type of the covariance function, | |
31 and returns a data structure <CODE>net</CODE>. The parameters are set to zero. | |
32 | |
33 <p>The fields in <CODE>net</CODE> are | |
34 <PRE> | |
35 type = 'gp' | |
36 nin = number of inputs | |
37 nout = number of outputs: always 1 | |
38 nwts = total number of weights and covariance function parameters | |
39 bias = logarithm of constant offset in covariance function | |
40 noise = logarithm of output noise variance | |
41 inweights = logarithm of inverse length scale for each input | |
42 covarfn = string describing the covariance function: | |
43 'sqexp' | |
44 'ratquad' | |
45 fpar = covariance function specific parameters (1 for squared exponential, | |
46 2 for rational quadratic) | |
47 trin = training input data (initially empty) | |
48 trtargets = training target data (initially empty) | |
49 </PRE> | |
50 | |
51 | |
52 <p><CODE>net = gp(nin, covarfn, prior)</CODE> sets a Gaussian prior on the | |
53 parameters of the model. <CODE>prior</CODE> must contain the fields | |
54 <CODE>pr_mean</CODE> and <CODE>pr_variance</CODE>. If <CODE>pr_mean</CODE> is a scalar, | |
55 then the Gaussian is assumed to be isotropic and the additional fields | |
56 <CODE>net.pr_mean</CODE> and <CODE>pr_variance</CODE> are set. Otherwise, | |
57 the Gaussian prior has a mean | |
58 defined by a column vector of parameters <CODE>prior.pr_mean</CODE> and | |
59 covariance defined by a column vector of parameters <CODE>prior.pr_variance</CODE>. | |
60 Each element of <CODE>prmean</CODE> corresponds to a separate group of parameters, which | |
61 need not be mutually exclusive. The membership of the groups is defined | |
62 by the matrix <CODE>prior.index</CODE> in which the columns correspond to the elements of | |
63 <CODE>prmean</CODE>. Each column has one element for each weight in the matrix, | |
64 in the order defined by the function <CODE>gppak</CODE>, and each element | |
65 is 1 or 0 according to whether the parameter is a member of the | |
66 corresponding group or not. The additional field <CODE>net.index</CODE> is set | |
67 in this case. | |
68 | |
69 <p><h2> | |
70 See Also | |
71 </h2> | |
72 <CODE><a href="gppak.htm">gppak</a></CODE>, <CODE><a href="gpunpak.htm">gpunpak</a></CODE>, <CODE><a href="gpfwd.htm">gpfwd</a></CODE>, <CODE><a href="gperr.htm">gperr</a></CODE>, <CODE><a href="gpcovar.htm">gpcovar</a></CODE>, <CODE><a href="gpgrad.htm">gpgrad</a></CODE><hr> | |
73 <b>Pages:</b> | |
74 <a href="index.htm">Index</a> | |
75 <hr> | |
76 <p>Copyright (c) Ian T Nabney (1996-9) | |
77 | |
78 | |
79 </body> | |
80 </html> |