Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/nethelp3.3/demtrain.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 <html> | |
2 <head> | |
3 <title> | |
4 Netlab Reference Manual demtrain | |
5 </title> | |
6 </head> | |
7 <body> | |
8 <H1> demtrain | |
9 </H1> | |
10 <h2> | |
11 Purpose | |
12 </h2> | |
13 Demonstrate training of MLP network. | |
14 | |
15 <p><h2> | |
16 Synopsis | |
17 </h2> | |
18 <PRE> | |
19 demtrain</PRE> | |
20 | |
21 | |
22 <p><h2> | |
23 Description | |
24 </h2> | |
25 <CODE>demtrain</CODE> brings up a simple GUI to show the training of | |
26 an MLP network on classification and regression problems. The user | |
27 should load in a dataset (which should be in Netlab format: see | |
28 <CODE>datread</CODE>), select the output activation function, the | |
29 number of cycles and hidden units and then | |
30 train the network. The scaled conjugate gradient algorithm is used. | |
31 A graph shows the evolution of the error: the value is shown | |
32 <CODE>max(ceil(iterations / 50), 5)</CODE> cycles. | |
33 | |
34 <p>Once the network is trained, it is saved to the file <CODE>mlptrain.net</CODE>. | |
35 The results can then be viewed as a confusion matrix (for classification | |
36 problems) or a plot of output versus target (for regression problems). | |
37 | |
38 <p><h2> | |
39 See Also | |
40 </h2> | |
41 <CODE><a href="confmat.htm">confmat</a></CODE>, <CODE><a href="datread.htm">datread</a></CODE>, <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="netopt.htm">netopt</a></CODE>, <CODE><a href="scg.htm">scg</a></CODE><hr> | |
42 <b>Pages:</b> | |
43 <a href="index.htm">Index</a> | |
44 <hr> | |
45 <p>Copyright (c) Ian T Nabney (1996-9) | |
46 | |
47 | |
48 </body> | |
49 </html> |