comparison toolboxes/FullBNT-1.0.7/nethelp3.3/demgp.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 <html>
2 <head>
3 <title>
4 Netlab Reference Manual demgp
5 </title>
6 </head>
7 <body>
8 <H1> demgp
9 </H1>
10 <h2>
11 Purpose
12 </h2>
13 Demonstrate simple regression using a Gaussian Process.
14
15 <p><h2>
16 Synopsis
17 </h2>
18 <PRE>
19 demgp</PRE>
20
21
22 <p><h2>
23 Description
24 </h2>
25 The problem consists of one input variable <CODE>x</CODE> and one target variable
26 <CODE>t</CODE>. The values in <CODE>x</CODE> are chosen in two separated clusters and the
27 target data is generated by computing <CODE>sin(2*pi*x)</CODE> and adding Gaussian
28 noise. Two Gaussian Processes, each with different covariance functions
29 are trained by optimising the hyperparameters
30 using the scaled conjugate gradient algorithm. The final predictions are
31 plotted together with 2 standard deviation error bars.
32
33 <p><h2>
34 See Also
35 </h2>
36 <CODE><a href="gp.htm">gp</a></CODE>, <CODE><a href="gperr.htm">gperr</a></CODE>, <CODE><a href="gpfwd.htm">gpfwd</a></CODE>, <CODE><a href="gpgrad.htm">gpgrad</a></CODE>, <CODE><a href="gpinit.htm">gpinit</a></CODE>, <CODE><a href="scg.htm">scg</a></CODE><hr>
37 <b>Pages:</b>
38 <a href="index.htm">Index</a>
39 <hr>
40 <p>Copyright (c) Ian T Nabney (1996-9)
41
42
43 </body>
44 </html>