Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/nethelp3.3/demev2.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 <html> | |
2 <head> | |
3 <title> | |
4 Netlab Reference Manual demev2 | |
5 </title> | |
6 </head> | |
7 <body> | |
8 <H1> demev2 | |
9 </H1> | |
10 <h2> | |
11 Purpose | |
12 </h2> | |
13 Demonstrate Bayesian classification for the MLP. | |
14 | |
15 <p><h2> | |
16 Synopsis | |
17 </h2> | |
18 <PRE> | |
19 demev2</PRE> | |
20 | |
21 | |
22 <p><h2> | |
23 Description | |
24 </h2> | |
25 A synthetic two class two-dimensional dataset <CODE>x</CODE> is sampled | |
26 from a mixture of four Gaussians. Each class is | |
27 associated with two of the Gaussians so that the optimal decision | |
28 boundary is non-linear. | |
29 A 2-layer | |
30 network with logistic outputs is trained by minimizing the cross-entropy | |
31 error function with isotroipc Gaussian regularizer (one hyperparameter for | |
32 each of the four standard weight groups), using the scaled | |
33 conjugate gradient optimizer. The hyperparameter vectors <CODE>alpha</CODE> and | |
34 <CODE>beta</CODE> are re-estimated using the function <CODE>evidence</CODE>. A graph | |
35 is plotted of the optimal, regularised, and unregularised decision | |
36 boundaries. A further plot of the moderated versus unmoderated contours | |
37 is generated. | |
38 | |
39 <p><h2> | |
40 See Also | |
41 </h2> | |
42 <CODE><a href="evidence.htm">evidence</a></CODE>, <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="scg.htm">scg</a></CODE>, <CODE><a href="demard.htm">demard</a></CODE>, <CODE><a href="demmlp2.htm">demmlp2</a></CODE><hr> | |
43 <b>Pages:</b> | |
44 <a href="index.htm">Index</a> | |
45 <hr> | |
46 <p>Copyright (c) Ian T Nabney (1996-9) | |
47 | |
48 | |
49 </body> | |
50 </html> |