comparison toolboxes/FullBNT-1.0.7/graph/mk_nbrs_of_digraph_broken.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [Gs, op, nodes] = mk_nbrs_of_digraph(G0)
2 % MK_NBRS_OF_DIGRAPH Make all digraphs that differ from G0 by a single edge deletion, addition or reversal
3 % [Gs, op, nodes] = mk_nbrs_of_digraph(G0)
4 %
5 % Gs(:,:,i) is the i'th neighbor
6 % op{i} = 'add', 'del', or 'rev' is the operation used to create the i'th neighbor.
7 % nodes(i,1:2) are the head and tail of the operated-on arc.
8
9 debug = 0; % the vectorized version is about 3 to 10 times faster
10
11 n = length(G0);
12 [I,J] = find(G0); % I(k), J(k) is the k'th edge
13 E = length(I); % num edges present in G0
14
15 % SINGLE EDGE DELETIONS
16
17 Grep = repmat(G0(:), 1, E); % each column is a copy of G0
18 % edge_ndx(k) is the scalar location of the k'th edge
19 edge_ndx = find(G0);
20 % edge_ndx = subv2ind([n n], [I J]); % equivalent
21 % We set (ndx(k), k) to 0 for k=1:E in Grep
22 ndx = subv2ind(size(Grep), [edge_ndx(:) (1:E)']);
23 G1 = Grep;
24 G1(ndx) = 0;
25 Gdel = reshape(G1, [n n E]);
26
27
28 % if debug
29 % % Non-vectorized version
30 % ctr = 1;
31 % for e=1:E
32 % i = I(e); j = J(e);
33 % Gdel2(:,:,ctr) = G0;
34 % Gdel2(i,j,ctr) = 0;
35 % ctr = ctr + 1;
36 % end
37 % assert(isequal(Gdel, Gdel2));
38 % end
39
40
41 % SINGLE EDGE REVERSALS
42
43 % rev_edge_ndx(k) is the scalar location of the k'th reversed edge
44 %rev_edge_ndx = find(G0'); % different order to edge_ndx, which is bad
45 rev_edge_ndx = subv2ind([n n], [J I]);
46 % We set (rev_edge_ndx(k), k) to 1 for k=1:E in G1
47 % We have already deleted i->j in the previous step
48 ndx = subv2ind(size(Grep), [rev_edge_ndx(:) (1:E)']);
49 G1(ndx) = 1;
50 Grev = reshape(G1, [n n E]);
51
52 % if debug
53 % % Non-vectorized version
54 % ctr = 1;
55 % for e=1:E
56 % i = I(e); j = J(e);
57 % Grev2(:,:,ctr) = G0;
58 % Grev2(i,j,ctr) = 0;
59 % Grev2(j,i,ctr) = 1;
60 % ctr = ctr + 1;
61 % end
62 % assert(isequal(Grev, Grev2));
63 % end
64
65
66 % SINGLE EDGE ADDITIONS
67
68 Gbar = ~G0; % Gbar(i,j)=1 iff there is no i->j edge in G0
69 Gbar = setdiag(Gbar, 0); % turn off self loops
70 [Ibar,Jbar] = find(Gbar);
71
72 bar_edge_ndx = find(Gbar);
73 Ebar = length(Ibar); % num edges present in Gbar
74 Grep = repmat(G0(:), 1, Ebar); % each column is a copy of G0
75 ndx = subv2ind(size(Grep), [bar_edge_ndx(:) (1:Ebar)']);
76 Grep(ndx) = 1;
77 Gadd = reshape(Grep, [n n Ebar]);
78
79 % if debug
80 % % Non-vectorized version
81 % ctr = 1;
82 % for e=1:length(Ibar)
83 % i = Ibar(e); j = Jbar(e);
84 % Gadd2(:,:,ctr) = G0;
85 % Gadd2(i,j,ctr) = 1;
86 % ctr = ctr + 1;
87 % end
88 % assert(isequal(Gadd, Gadd2));
89 % end
90
91
92 Gs = cat(3, Gdel, Grev, Gadd);
93
94 nodes = [I J;
95 I J;
96 Ibar Jbar];
97
98 op = cell(1, E+E+Ebar);
99 op(1:E) = {'del'};
100 op(E+1:2*E) = {'rev'};
101 op(2*E+1:end) = {'add'};
102
103
104 % numeric output:
105 % op(i) = 1, 2, or 3, if the i'th neighbor was created by adding, deleting or reversing an arc.
106
107 ADD = 1;
108 DEL = 2;
109 REV = 3;
110
111 %op = [repmat(DEL, 1, E) repmat(REV, 1, E) repmat(ADD, 1, Ebar)];