Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/graph/mk_nbrs_of_digraph_broken.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [Gs, op, nodes] = mk_nbrs_of_digraph(G0) | |
2 % MK_NBRS_OF_DIGRAPH Make all digraphs that differ from G0 by a single edge deletion, addition or reversal | |
3 % [Gs, op, nodes] = mk_nbrs_of_digraph(G0) | |
4 % | |
5 % Gs(:,:,i) is the i'th neighbor | |
6 % op{i} = 'add', 'del', or 'rev' is the operation used to create the i'th neighbor. | |
7 % nodes(i,1:2) are the head and tail of the operated-on arc. | |
8 | |
9 debug = 0; % the vectorized version is about 3 to 10 times faster | |
10 | |
11 n = length(G0); | |
12 [I,J] = find(G0); % I(k), J(k) is the k'th edge | |
13 E = length(I); % num edges present in G0 | |
14 | |
15 % SINGLE EDGE DELETIONS | |
16 | |
17 Grep = repmat(G0(:), 1, E); % each column is a copy of G0 | |
18 % edge_ndx(k) is the scalar location of the k'th edge | |
19 edge_ndx = find(G0); | |
20 % edge_ndx = subv2ind([n n], [I J]); % equivalent | |
21 % We set (ndx(k), k) to 0 for k=1:E in Grep | |
22 ndx = subv2ind(size(Grep), [edge_ndx(:) (1:E)']); | |
23 G1 = Grep; | |
24 G1(ndx) = 0; | |
25 Gdel = reshape(G1, [n n E]); | |
26 | |
27 | |
28 % if debug | |
29 % % Non-vectorized version | |
30 % ctr = 1; | |
31 % for e=1:E | |
32 % i = I(e); j = J(e); | |
33 % Gdel2(:,:,ctr) = G0; | |
34 % Gdel2(i,j,ctr) = 0; | |
35 % ctr = ctr + 1; | |
36 % end | |
37 % assert(isequal(Gdel, Gdel2)); | |
38 % end | |
39 | |
40 | |
41 % SINGLE EDGE REVERSALS | |
42 | |
43 % rev_edge_ndx(k) is the scalar location of the k'th reversed edge | |
44 %rev_edge_ndx = find(G0'); % different order to edge_ndx, which is bad | |
45 rev_edge_ndx = subv2ind([n n], [J I]); | |
46 % We set (rev_edge_ndx(k), k) to 1 for k=1:E in G1 | |
47 % We have already deleted i->j in the previous step | |
48 ndx = subv2ind(size(Grep), [rev_edge_ndx(:) (1:E)']); | |
49 G1(ndx) = 1; | |
50 Grev = reshape(G1, [n n E]); | |
51 | |
52 % if debug | |
53 % % Non-vectorized version | |
54 % ctr = 1; | |
55 % for e=1:E | |
56 % i = I(e); j = J(e); | |
57 % Grev2(:,:,ctr) = G0; | |
58 % Grev2(i,j,ctr) = 0; | |
59 % Grev2(j,i,ctr) = 1; | |
60 % ctr = ctr + 1; | |
61 % end | |
62 % assert(isequal(Grev, Grev2)); | |
63 % end | |
64 | |
65 | |
66 % SINGLE EDGE ADDITIONS | |
67 | |
68 Gbar = ~G0; % Gbar(i,j)=1 iff there is no i->j edge in G0 | |
69 Gbar = setdiag(Gbar, 0); % turn off self loops | |
70 [Ibar,Jbar] = find(Gbar); | |
71 | |
72 bar_edge_ndx = find(Gbar); | |
73 Ebar = length(Ibar); % num edges present in Gbar | |
74 Grep = repmat(G0(:), 1, Ebar); % each column is a copy of G0 | |
75 ndx = subv2ind(size(Grep), [bar_edge_ndx(:) (1:Ebar)']); | |
76 Grep(ndx) = 1; | |
77 Gadd = reshape(Grep, [n n Ebar]); | |
78 | |
79 % if debug | |
80 % % Non-vectorized version | |
81 % ctr = 1; | |
82 % for e=1:length(Ibar) | |
83 % i = Ibar(e); j = Jbar(e); | |
84 % Gadd2(:,:,ctr) = G0; | |
85 % Gadd2(i,j,ctr) = 1; | |
86 % ctr = ctr + 1; | |
87 % end | |
88 % assert(isequal(Gadd, Gadd2)); | |
89 % end | |
90 | |
91 | |
92 Gs = cat(3, Gdel, Grev, Gadd); | |
93 | |
94 nodes = [I J; | |
95 I J; | |
96 Ibar Jbar]; | |
97 | |
98 op = cell(1, E+E+Ebar); | |
99 op(1:E) = {'del'}; | |
100 op(E+1:2*E) = {'rev'}; | |
101 op(2*E+1:end) = {'add'}; | |
102 | |
103 | |
104 % numeric output: | |
105 % op(i) = 1, 2, or 3, if the i'th neighbor was created by adding, deleting or reversing an arc. | |
106 | |
107 ADD = 1; | |
108 DEL = 2; | |
109 REV = 3; | |
110 | |
111 %op = [repmat(DEL, 1, E) repmat(REV, 1, E) repmat(ADD, 1, Ebar)]; |