comparison toolboxes/FullBNT-1.0.7/bnt/learning/bayes_update_params.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function bnet = bayes_update_params(bnet, cases, clamped)
2 % BAYES_UPDATE_PARAMS Bayesian parameter updating given completely observed data
3 % bnet = bayes_update_params(bnet, cases, clamped)
4 %
5 % If there is a missing data, you must use EM.
6 % cases(i,m) is the value assigned to node i in case m (this can also be a cell array).
7 % clamped(i,m) = 1 if node i was set by intervention in case m (default: clamped = zeros).
8 % Clamped nodes are not updated.
9 % If there is a single case, clamped is a list of the clamped nodes, not a bit vector.
10
11
12 %if iscell(cases), usecell = 1; else usecell = 0; end
13
14 n = length(bnet.dag);
15 ncases = size(cases, 2);
16 if n ~= size(cases, 1)
17 error('data must be of size nnodes * ncases');
18 end
19
20 if ncases == 1 % clamped is a list of nodes
21 if nargin < 3, clamped = []; end
22 clamp_set = clamped;
23 clamped = zeros(n,1);
24 clamped(clamp_set) = 1;
25 else % each row of clamped is a bit vector
26 if nargin < 3, clamped = zeros(n,ncases); end
27 end
28
29 for i=1:n
30 e = bnet.equiv_class(i);
31 if adjustable_CPD(bnet.CPD{e})
32 u = find(clamped(i,:)==0);
33 ps = parents(bnet.dag, i);
34 bnet.CPD{e} = bayes_update_params(bnet.CPD{e}, cases(i,u), cases(ps,u));
35 end
36 end
37
38