comparison toolboxes/FullBNT-1.0.7/bnt/general/mk_dbn.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function bnet = mk_dbn(intra, inter, node_sizes, varargin)
2 % MK_DBN Make a Dynamic Bayesian Network.
3 %
4 % BNET = MK_DBN(INTRA, INTER, NODE_SIZES, ...) makes a DBN with arcs
5 % from i in slice t to j in slice t iff intra(i,j) = 1, and
6 % from i in slice t to j in slice t+1 iff inter(i,j) = 1,
7 % for i,j in {1, 2, ..., n}, where n = num. nodes per slice, and t >= 1.
8 % node_sizes(i) is the number of values node i can take on.
9 % The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary.
10 % See also mk_bnet.
11 %
12 % Optional arguments [default in brackets]
13 % 'discrete' - list of discrete nodes [1:n]
14 % 'observed' - the list of nodes which will definitely be observed in every slice of every case [ [] ]
15 % 'eclass1' - equiv class for slice 1 [1:n]
16 % 'eclass2' - equiv class for slice 2 [tie nodes with equivalent parents to slice 1]
17 % equiv_class1(i) = j means node i in slice 1 gets its parameters from bnet.CPD{j},
18 % i.e., nodes i and j have tied parameters.
19 % 'intra1' - topology of first slice, if different from others
20 % 'names' - a cell array of strings to be associated with nodes 1:n [{}]
21 % This creates an associative array, so you write e.g.
22 % 'evidence(bnet.names{'bar'}) = 42' instead of 'evidence(2} = 42'
23 % assuming names = { 'foo', 'bar', ...}.
24 %
25 % For backwards compatibility with BNT2, arguments can also be specified as follows
26 % bnet = mk_dbn(intra, inter, node_sizes, dnodes, eclass1, eclass2, intra1)
27 %
28 % After calling this function, you must specify the parameters (conditional probability
29 % distributions) using bnet.CPD{i} = gaussian_CPD(...) or tabular_CPD(...) etc.
30
31
32 n = length(intra);
33 ss = n;
34 bnet.nnodes_per_slice = ss;
35 bnet.intra = intra;
36 bnet.inter = inter;
37 bnet.intra1 = intra;
38 dag = zeros(2*n);
39 dag(1:n,1:n) = bnet.intra1;
40 dag(1:n,(1:n)+n) = bnet.inter;
41 dag((1:n)+n,(1:n)+n) = bnet.intra;
42 bnet.dag = dag;
43 bnet.names = {};
44
45 directed = 1;
46 if ~acyclic(dag,directed)
47 error('graph must be acyclic')
48 end
49
50
51 bnet.eclass1 = 1:n;
52 %bnet.eclass2 = (1:n)+n;
53 bnet.eclass2 = bnet.eclass1;
54 for i=1:ss
55 if isequal(parents(dag, i+ss), parents(dag, i)+ss)
56 %fprintf('%d has isomorphic parents, eclass %d\n', i, bnet.eclass2(i))
57 else
58 bnet.eclass2(i) = max(bnet.eclass2) + 1;
59 %fprintf('%d has non isomorphic parents, eclass %d\n', i, bnet.eclass2(i))
60 end
61 end
62
63 dnodes = 1:n;
64 bnet.observed = [];
65
66 if nargin >= 4
67 args = varargin;
68 nargs = length(args);
69 if ~isstr(args{1})
70 if nargs >= 1, dnodes = args{1}; end
71 if nargs >= 2, bnet.eclass1 = args{2}; end
72 if nargs >= 3, bnet.eclass2 = args{3}; end
73 if nargs >= 4, bnet.intra1 = args{4}; end
74 else
75 for i=1:2:nargs
76 switch args{i},
77 case 'discrete', dnodes = args{i+1};
78 case 'observed', bnet.observed = args{i+1};
79 case 'eclass1', bnet.eclass1 = args{i+1};
80 case 'eclass2', bnet.eclass2 = args{i+1};
81 case 'intra1', bnet.intra1 = args{i+1};
82 %case 'ar_hmm', bnet.ar_hmm = args{i+1}; % should check topology
83 case 'names', bnet.names = assocarray(args{i+1}, num2cell(1:n));
84 otherwise,
85 error(['invalid argument name ' args{i}]);
86 end
87 end
88 end
89 end
90
91
92 bnet.observed = sort(bnet.observed); % for comparing sets
93 ns = node_sizes;
94 bnet.node_sizes_slice = ns(:)';
95 bnet.node_sizes = [ns(:) ns(:)];
96
97 cnodes = mysetdiff(1:n, dnodes);
98 bnet.dnodes_slice = dnodes;
99 bnet.cnodes_slice = cnodes;
100 bnet.dnodes = [dnodes dnodes+n];
101 bnet.cnodes = [cnodes cnodes+n];
102
103 bnet.equiv_class = [bnet.eclass1(:) bnet.eclass2(:)];
104 bnet.CPD = cell(1,max(bnet.equiv_class(:)));
105 eclass = bnet.equiv_class(:);
106 E = max(eclass);
107 bnet.rep_of_eclass = zeros(1,E);
108 for e=1:E
109 mems = find(eclass==e);
110 bnet.rep_of_eclass(e) = mems(1);
111 end
112
113 ss = n;
114 onodes = bnet.observed;
115 hnodes = mysetdiff(1:ss, onodes);
116 bnet.hidden_bitv = zeros(1,2*ss);
117 bnet.hidden_bitv(hnodes) = 1;
118 bnet.hidden_bitv(hnodes+ss) = 1;
119
120 bnet.parents = cell(1, 2*ss);
121 for i=1:ss
122 bnet.parents{i} = parents(bnet.dag, i);
123 bnet.parents{i+ss} = parents(bnet.dag, i+ss);
124 end
125
126 bnet.auto_regressive = zeros(1,ss);
127 % ar(i)=1 means (observed) node i depends on i in the previous slice
128 for o=bnet.observed(:)'
129 if any(bnet.parents{o+ss} <= ss)
130 bnet.auto_regressive(o) = 1;
131 end
132 end
133