Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/general/dbn_to_hmm.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [startprob, transprob, obsprob] = dbn_to_hmm(bnet) | |
2 % DBN_TO_HMM % Convert DBN params to HMM params | |
3 % [startprob, transprob, obsprob] = dbn_to_hmm(bnet, onodes) | |
4 % startprob(i) | |
5 % transprob(i,j) | |
6 % obsprob{k}.big_CPT(i,o) if k'th observed node is discrete | |
7 % obsprob{k}.big_mu(:,i), .big_Sigma(:,:,i) if k'th observed node is Gaussian | |
8 % Big means the domain contains all the hidden discrete nodes, not just the parents. | |
9 | |
10 % Called by constructor and by update_engine | |
11 | |
12 ss = length(bnet.intra); | |
13 onodes = bnet.observed; | |
14 hnodes = mysetdiff(1:ss, onodes); | |
15 evidence = cell(ss, 2); | |
16 ns = bnet.node_sizes(:); | |
17 Qh = prod(ns(hnodes)); | |
18 tmp = dpot_to_table(compute_joint_pot(bnet, hnodes, evidence)); | |
19 startprob = reshape(tmp, Qh, 1); | |
20 | |
21 tmp = dpot_to_table(compute_joint_pot(bnet, hnodes+ss, evidence, [hnodes hnodes+ss])); | |
22 transprob = mk_stochastic(reshape(tmp, Qh, Qh)); | |
23 | |
24 % P(o|ps) is used by mk_hmm_obs_lik_vec for a single time slice | |
25 % P(o|h) (the big version), where h = all hidden nodes, is used by enter_evidence | |
26 | |
27 obsprob = cell(1, length(onodes)); | |
28 for i=1:length(onodes) | |
29 o = onodes(i); | |
30 if bnet.auto_regressive(o) | |
31 % We assume the parents of this node are all the hidden nodes in the slice, | |
32 % so the params already are "big". Also, we assume we regress only on our old selves. | |
33 % slice 1 | |
34 e = bnet.equiv_class(o); | |
35 CPD = struct(bnet.CPD{e}); | |
36 O = ns(o); | |
37 ps = bnet.parents{o}; | |
38 Qps = prod(ns(ps)); | |
39 obsprob{i}.big_mu0 = reshape(CPD.mean, [O Qps]); | |
40 obsprob{i}.big_Sigma0 = reshape(CPD.cov, [O O Qps]); | |
41 | |
42 % slice t>1 | |
43 e = bnet.equiv_class(o+ss); | |
44 CPD = struct(bnet.CPD{e}); | |
45 O = ns(o); | |
46 dps = mysetdiff(bnet.parents{o+ss}, o); | |
47 Qdps = prod(ns(dps)); | |
48 obsprob{i}.big_mu = reshape(CPD.mean, [O Qdps]); | |
49 obsprob{i}.big_Sigma = reshape(CPD.cov, [O O Qdps]); | |
50 obsprob{i}.big_W = reshape(CPD.weights, [O O Qdps]); | |
51 else | |
52 e = bnet.equiv_class(o+ss); | |
53 CPD = struct(bnet.CPD{e}); | |
54 O = ns(o); | |
55 ps = bnet.parents{o}; | |
56 Qps = prod(ns(ps)); | |
57 % We make a big potential, replicating the params if necessary | |
58 % e.g., for a 2 chain coupled HMM, mu(:,Q1) becomes mu(:,Q1,Q2) | |
59 bigpot = pot_to_marginal(compute_joint_pot(bnet, onodes(i), evidence, [hnodes onodes(i)])); | |
60 | |
61 if myismember(o, bnet.dnodes) | |
62 obsprob{i}.CPT = reshape(CPD.CPT, [Qps O]); | |
63 obsprob{i}.big_CPT = reshape(bigpot.T, Qh, O); | |
64 else | |
65 obsprob{i}.big_mu = bigpot.mu; | |
66 obsprob{i}.big_Sigma = bigpot.Sigma; | |
67 | |
68 if 1 | |
69 obsprob{i}.mu = reshape(CPD.mean, [O Qps]); | |
70 C = reshape(CPD.cov, [O O Qps]); | |
71 obsprob{i}.Sigma = C; | |
72 d = size(obsprob{i}.mu, 1); | |
73 for j=1:Qps | |
74 obsprob{i}.inv_Sigma(:,:,j) = inv(C(:,:,j)); | |
75 obsprob{i}.denom(j) = (2*pi)^(d/2)*sqrt(abs(det(C(:,:,j)))); | |
76 end | |
77 end | |
78 | |
79 end % if discrete | |
80 end % if ar | |
81 end % for |