Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/examples/static/mixexp3.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 % Fit a piece-wise linear regression model. | |
2 % Here is the model | |
3 % | |
4 % X \ | |
5 % | | | |
6 % Q | | |
7 % | / | |
8 % Y | |
9 % | |
10 % where all arcs point down. | |
11 % We condition everything on X, so X is a root node. Q is a softmax, and Y is a linear Gaussian. | |
12 % Q is hidden, X and Y are observed. | |
13 | |
14 X = 1; | |
15 Q = 2; | |
16 Y = 3; | |
17 dag = zeros(3,3); | |
18 dag(X,[Q Y]) = 1; | |
19 dag(Q,Y) = 1; | |
20 ns = [1 2 1]; % make X and Y scalars, and have 2 experts | |
21 dnodes = [2]; | |
22 onodes = [1 3]; | |
23 bnet = mk_bnet(dag, ns, 'discrete', dnodes, 'observed', onodes); | |
24 | |
25 IRLS_iter = 10; | |
26 clamped = 0; | |
27 | |
28 bnet.CPD{1} = root_CPD(bnet, 1); | |
29 | |
30 % start with good initial params | |
31 w = [-5 5]; % w(:,i) is the normal vector to the i'th decisions boundary | |
32 b = [0 0]; % b(i) is the offset (bias) to the i'th decisions boundary | |
33 | |
34 mu = [0 0]; | |
35 sigma = 1; | |
36 Sigma = repmat(sigma*eye(ns(Y)), [ns(Y) ns(Y) ns(Q)]); | |
37 W = [-1 1]; | |
38 W2 = reshape(W, [ns(Y) ns(X) ns(Q)]); | |
39 | |
40 bnet.CPD{2} = softmax_CPD(bnet, 2, w, b, clamped, IRLS_iter); | |
41 bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', mu, 'cov', Sigma, 'weights', W2); | |
42 | |
43 | |
44 engine = jtree_inf_engine(bnet); | |
45 | |
46 evidence = cell(1,3); | |
47 evidence{X} = 0.68; | |
48 | |
49 engine = enter_evidence(engine, evidence); | |
50 | |
51 m = marginal_nodes(engine, Y); | |
52 m.mu |