Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/examples/static/mixexp2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 % Fit a piece-wise linear regression model. | |
2 % Here is the model | |
3 % | |
4 % X \ | |
5 % | | | |
6 % Q | | |
7 % | / | |
8 % Y | |
9 % | |
10 % where all arcs point down. | |
11 % We condition everything on X, so X is a root node. Q is a softmax, and Y is a linear Gaussian. | |
12 % Q is hidden, X and Y are observed. | |
13 | |
14 X = 1; | |
15 Q = 2; | |
16 Y = 3; | |
17 dag = zeros(3,3); | |
18 dag(X,[Q Y]) = 1; | |
19 dag(Q,Y) = 1; | |
20 ns = [1 2 1]; % make X and Y scalars, and have 2 experts | |
21 dnodes = [2]; | |
22 onodes = [1 3]; | |
23 bnet = mk_bnet(dag, ns, 'discrete', dnodes, 'observed', onodes); | |
24 | |
25 IRLS_iter = 10; | |
26 clamped = 0; | |
27 | |
28 bnet.CPD{1} = root_CPD(bnet, 1); | |
29 | |
30 if 0 | |
31 % start with good initial params | |
32 w = [-5 5]; % w(:,i) is the normal vector to the i'th decisions boundary | |
33 b = [0 0]; % b(i) is the offset (bias) to the i'th decisions boundary | |
34 | |
35 mu = [0 0]; | |
36 sigma = 1; | |
37 Sigma = repmat(sigma*eye(ns(Y)), [ns(Y) ns(Y) ns(Q)]); | |
38 W = [-1 1]; | |
39 W2 = reshape(W, [ns(Y) ns(X) ns(Q)]); | |
40 | |
41 bnet.CPD{2} = softmax_CPD(bnet, 2, w, b, clamped, IRLS_iter); | |
42 bnet.CPD{3} = gaussian_CPD(bnet, 3, mu, Sigma, W2); | |
43 else | |
44 % start with rnd initial params | |
45 rand('state', 0); | |
46 randn('state', 0); | |
47 bnet.CPD{2} = softmax_CPD(bnet, 2, 'clamped', clamped, 'max_iter', IRLS_iter); | |
48 bnet.CPD{3} = gaussian_CPD(bnet, 3); | |
49 end | |
50 | |
51 | |
52 | |
53 load('/examples/static/Misc/mixexp_data.txt', '-ascii'); | |
54 % Just use 1/10th of the data, to speed things up | |
55 data = mixexp_data(1:10:end, :); | |
56 %data = mixexp_data; | |
57 | |
58 %plot(data(:,1), data(:,2), '.') | |
59 | |
60 | |
61 s = struct(bnet.CPD{2}); % violate object privacy | |
62 %eta0 = [s.glim.b1; s.glim.w1]'; | |
63 eta0 = [s.glim{1}.b1; s.glim{1}.w1]'; | |
64 s = struct(bnet.CPD{3}); % violate object privacy | |
65 W = reshape(s.weights, [1 2]); | |
66 theta0 = [s.mean; W]'; | |
67 | |
68 %figure(1) | |
69 %mixexp_plot(theta0, eta0, data); | |
70 %suptitle('before learning') | |
71 | |
72 ncases = size(data, 1); | |
73 cases = cell(3, ncases); | |
74 cases([1 3], :) = num2cell(data'); | |
75 | |
76 engine = jtree_inf_engine(bnet); | |
77 | |
78 % log lik before learning | |
79 ll = 0; | |
80 for l=1:ncases | |
81 ev = cases(:,l); | |
82 [engine, loglik] = enter_evidence(engine, ev); | |
83 ll = ll + loglik; | |
84 end | |
85 | |
86 % do learning | |
87 max_iter = 5; | |
88 [bnet2, LL2] = learn_params_em(engine, cases, max_iter); | |
89 | |
90 s = struct(bnet2.CPD{2}); | |
91 %eta2 = [s.glim.b1; s.glim.w1]'; | |
92 eta2 = [s.glim{1}.b1; s.glim{1}.w1]'; | |
93 s = struct(bnet2.CPD{3}); | |
94 W = reshape(s.weights, [1 2]); | |
95 theta2 = [s.mean; W]'; | |
96 | |
97 %figure(2) | |
98 %mixexp_plot(theta2, eta2, data); | |
99 %suptitle('after learning') | |
100 | |
101 fprintf('mixexp2: loglik before learning %f, after %d iters %f\n', ll, length(LL2), LL2(end)); | |
102 | |
103 | |
104 |