Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/examples/static/fgraph/fg_mrf1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 seed = 0; | |
2 rand('state', seed); | |
3 randn('state', seed); | |
4 | |
5 nrows = 3; | |
6 ncols = 3; | |
7 npixels = nrows*ncols; | |
8 | |
9 % we number pixels in transposed raster scan order (top to bottom, left to right) | |
10 | |
11 % hidden var | |
12 HV = reshape(1:npixels, nrows, ncols); | |
13 % observed var | |
14 OV = reshape(1:npixels, nrows, ncols) + length(HV(:)); | |
15 | |
16 % observed factor | |
17 OF = reshape(1:npixels, nrows, ncols); | |
18 % vertical edge factor VEF(i,j) is the factor for edge HV(i,j) - HV(i+1,j) | |
19 VEF = reshape((1:(nrows-1)*ncols), nrows-1, ncols) + length(OF(:)); | |
20 % horizontal edge factor HEF(i,j) is the factor for edge HV(i,j) - HV(i,j+1) | |
21 HEF = reshape((1:nrows*(ncols-1)), nrows, ncols-1) + length(OF(:)) + length(VEF(:)); | |
22 | |
23 nvars = length(HV(:))+length(OV(:)); | |
24 assert(nvars == 2*npixels); | |
25 nfac = length(OF(:)) + length(VEF(:)) + length(HEF(:)); | |
26 | |
27 K = 2; % number of discrete values for the hidden vars | |
28 %O = 1; % each observed pixel is a scalar | |
29 O = 2; % each observed pixel is binary | |
30 | |
31 factors = cell(1,3); | |
32 | |
33 % hidden states generate observed 0 or 1 plus noise | |
34 %factors{2} = cond_gauss1_kernel(K, O, 'mean', [0 1], 'cov', [0.1 0.1]); | |
35 pnoise = 0.2; | |
36 factors{1} = tabular_kernel([K O], [1-pnoise pnoise; pnoise 1-pnoise]); | |
37 ofactor = 1; | |
38 | |
39 % encourage compatibility between neighboring vertical pixels | |
40 factors{2} = tabular_kernel([K K], [0.8 0.2; 0.2 0.8]); | |
41 vedge_factor = 2; | |
42 | |
43 %% no constraint between neighboring horizontal pixels | |
44 %factors{3} = tabular_kernel([K K], [0.5 0.5; 0.5 0.5]); | |
45 | |
46 factors{3} = tabular_kernel([K K], [0.8 0.2; 0.2 0.8]); | |
47 hedge_factor = 3; | |
48 | |
49 | |
50 | |
51 factor_ndx = zeros(1, 3); | |
52 G = zeros(nvars, nfac); | |
53 ns = [K*ones(1,length(HV(:))) O*ones(1,length(OV(:)))]; | |
54 | |
55 N = length(ns); | |
56 %cnodes = OV(:); | |
57 cnodes = []; | |
58 dnodes = 1:N; | |
59 | |
60 for i=1:nrows | |
61 for j=1:ncols | |
62 G([HV(i,j), OV(i,j)], OF(i,j)) = 1; | |
63 factor_ndx(OF(i,j)) = ofactor; | |
64 | |
65 if i < nrows | |
66 G(HV(i:i+1,j), VEF(i,j)) = 1; | |
67 factor_ndx(VEF(i,j)) = vedge_factor; | |
68 end | |
69 | |
70 if j < ncols | |
71 G(HV(i,j:j+1), HEF(i,j)) = 1; | |
72 factor_ndx(HEF(i,j)) = hedge_factor; | |
73 end | |
74 | |
75 end | |
76 end | |
77 | |
78 | |
79 fg = mk_fgraph(G, ns, factors, 'discrete', dnodes, 'equiv_class', factor_ndx); | |
80 | |
81 if 1 | |
82 % make image with vertical stripes | |
83 I = zeros(nrows, ncols); | |
84 for j=1:2:ncols | |
85 I(:,j) = 1; | |
86 end | |
87 else | |
88 % make image with square in middle | |
89 I = zeros(nrows, ncols); | |
90 I(3:6,3:6) = 1; | |
91 end | |
92 | |
93 | |
94 % corrupt image | |
95 O = mod(I + (rand(nrows,ncols)> (1-pnoise)), 2); | |
96 | |
97 maximize = 1; | |
98 engine = belprop_fg_inf_engine(fg, 'maximize', maximize, 'max_iter', npixels*5); | |
99 | |
100 evidence = cell(1, nvars); | |
101 onodes = OV(:); | |
102 evidence(onodes) = num2cell(O+1); % values must be in range {1,2} | |
103 | |
104 engine = enter_evidence(engine, evidence); | |
105 | |
106 for i=1:nrows | |
107 for j=1:ncols | |
108 m = marginal_nodes(engine, HV(i,j)); | |
109 Ihat(i,j) = argmax(m.T)-1; | |
110 end | |
111 end | |
112 | |
113 Ihat |