Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/ghmm1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 % Make an HMM with Gaussian observations | |
2 % X1 -> X2 | |
3 % | | | |
4 % v v | |
5 % Y1 Y2 | |
6 | |
7 intra = zeros(2); | |
8 intra(1,2) = 1; | |
9 inter = zeros(2); | |
10 inter(1,1) = 1; | |
11 n = 2; | |
12 | |
13 Q = 2; % num hidden states | |
14 O = 2; % size of observed vector | |
15 ns = [Q O]; | |
16 bnet = mk_dbn(intra, inter, ns, 'discrete', 1, 'observed', 2); | |
17 | |
18 prior0 = normalise(rand(Q,1)); | |
19 transmat0 = mk_stochastic(rand(Q,Q)); | |
20 mu0 = rand(O,Q); | |
21 Sigma0 = repmat(eye(O), [1 1 Q]); | |
22 bnet.CPD{1} = tabular_CPD(bnet, 1, prior0); | |
23 %% we set the cov prior to 0 to give same results as HMM toolbox | |
24 %bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', mu0, 'cov', Sigma0, 'cov_prior_weight', 0); | |
25 bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', mu0, 'cov', Sigma0); | |
26 bnet.CPD{3} = tabular_CPD(bnet, 3, transmat0); | |
27 | |
28 | |
29 T = 5; % fixed length sequences | |
30 | |
31 engine = {}; | |
32 engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet)); | |
33 engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet)); | |
34 engine{end+1} = hmm_inf_engine(bnet); | |
35 engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T); | |
36 %engine{end+1} = frontier_inf_engine(bnet); | |
37 engine{end+1} = bk_inf_engine(bnet, 'clusters', {[1]}); | |
38 engine{end+1} = jtree_dbn_inf_engine(bnet); | |
39 | |
40 | |
41 inf_time = cmp_inference_dbn(bnet, engine, T); | |
42 | |
43 ncases = 2; | |
44 max_iter = 2; | |
45 [learning_time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, 'ncases', ncases, 'max_iter', max_iter); | |
46 | |
47 % Compare to HMM toolbox | |
48 | |
49 data = zeros(O, T, ncases); | |
50 for i=1:ncases | |
51 data(:,:,i) = cell2num(cases{i}(bnet.observed, :)); | |
52 end | |
53 | |
54 tic | |
55 [LL2, prior2, transmat2, mu2, Sigma2] = mhmm_em(data, prior0, transmat0, mu0, Sigma0, [], 'max_iter', max_iter); | |
56 t=toc; | |
57 disp(['HMM toolbox took ' num2str(t) ' seconds ']) | |
58 | |
59 e = 1; | |
60 assert(approxeq(prior2, CPD{e,1}.CPT)) | |
61 assert(approxeq(mu2, CPD{e,2}.mean)) | |
62 assert(approxeq(Sigma2, CPD{e,2}.cov)) | |
63 assert(approxeq(transmat2, CPD{e,3}.CPT)) | |
64 assert(approxeq(LL2, LL{e})) |